fractional p-index
The fractional p-index (Prathap 2011) is a variant of the p-index (Prathap) which attempts to account for multiple-authored publications by adjusting both citation and publication counts by author counts. It is calculated as:
$$C^{\prime}=\sum\limits_{i=1}^{P}{\frac{C_i}{A_i}}$$$$P^{\prime}=\sum\limits_{i=1}^{P}{\frac{1}{A_i}}$$$$p_f=\sqrt[3]{\frac{\left.C^{\prime}\right.^2}{P^{\prime}}}$$History
Year | pf |
---|---|
1997 | 0.4754 |
1998 | 2.0484 |
1999 | 3.7987 |
2000 | 5.2687 |
2001 | 7.0405 |
2002 | 9.7333 |
2003 | 12.7419 |
2004 | 16.4350 |
2005 | 19.0003 |
2006 | 24.3481 |
2007 | 29.0375 |
2008 | 33.5938 |
2009 | 37.1393 |
2010 | 41.7338 |
2011 | 46.7924 |
2012 | 51.3848 |
2013 | 56.0268 |
2014 | 59.1169 |
2015 | 62.5873 |
2016 | 66.5810 |
2017 | 70.1956 |
2018 | 73.0493 |
2019 | 76.1665 |
2020 | 79.2467 |
2021 | 82.8749 |
2022 | 86.0979 |
2023 | 89.5855 |
2024 | 92.3462 |
2025 | 93.9731 |
References
- Prathap, G. (2011) The fractional and harmonic p-indices for multiple authorship. Scientometrics 86:239–244.