circular citation area radius
The circular citation area radius (Sangwal 2012) is an easy to calculate approximation of the h-index.
$$r=\sqrt{\frac{C^P}{\pi}}=\sqrt{\frac{\sum\limits_{i=1}^{P}{C_i}}{\pi}}$$History
Year | r |
---|---|
1997 | 0.7979 |
1998 | 2.2568 |
1999 | 3.7424 |
2000 | 5.2016 |
2001 | 6.8637 |
2002 | 9.0622 |
2003 | 11.2697 |
2004 | 14.2618 |
2005 | 17.3161 |
2006 | 20.7373 |
2007 | 23.8633 |
2008 | 26.7738 |
2009 | 29.5594 |
2010 | 32.6695 |
2011 | 35.9314 |
2012 | 38.8718 |
2013 | 41.8984 |
2014 | 44.5317 |
2015 | 47.0414 |
2016 | 49.4399 |
2017 | 51.4960 |
2018 | 53.5178 |
2019 | 55.4745 |
2020 | 57.3978 |
2021 | 59.3848 |
2022 | 61.2633 |
2023 | 62.8837 |
2024 | 64.4931 |
2025 | 65.3486 |
References
- Sangwal, K. (2012) On the relationship between citations of publication output and Hirsch index h of authors: Conceptualization of tapered Hirsch index hT, circular citation area radius R and ciation acceleration a. Scientometrics 93:987–1004.