← Back to introduction

EM′-index

The EM′-index (Bihari and Tripathi 2017) is an extension of the EM-index which includes all publications, rather than just those from the core. Like the EM-index, we begin by creating a vector (E) where the first value is E1 = h. Subsequent values of the vector, Ei+1, are determined by subtracting Ei from the citation count for all publications in the core defined by Ei, and recalculating h from these new citation counts, reranking all publications by these new citation counts as necessary (i.e., some of the publications previously in the tail of the citation distribution may advance beyond publications in the core as citations representing earlier calculations of h are “used up”). This process continues until one runs out of citations, all of the remaining publications have only a single remaining citation, or there is only a single publication left to be considered. From this vector, one calculates the index as:

$$EM^\prime=\sqrt{\sum\limits_{i=1}^{n}{E_i}},$$

where Ei and n are the ith element and length of E, respectively.

Example

Publications are ordered by number of citations, from highest to lowest. After each step, Ei is subtracted from the citations of the top Ei publications and all publications are re-ranked by this adjusted citation count for the next step.

Citations (Ci)592616111110433211100000
Rank (i)123456789101112131415161718
E1 = 6
Adjusted Citations (Ci)532010554433211100000
New Rank (i)123456789101112131415161718
E2 = 5
Adjusted Citations (Ci)48155443321110000000
New Rank (i)123456789101112131415161718
E3 = 4
Adjusted Citations (Ci)44114332111100000000
New Rank (i)123456789101112131415161718
E4 = 3
Adjusted Citations (Ci)4183321111100000000
New Rank (i)123456789101112131415161718
E5 = 3
Adjusted Citations (Ci)3853211111000000000
New Rank (i)123456789101112131415161718
E6 = 3
Adjusted Citations (Ci)3522111110000000000
New Rank (i)123456789101112131415161718
E7 = 2
Adjusted Citations (Ci)3321111100000000000
New Rank (i)123456789101112131415161718
E8 = 2
Adjusted Citations (Ci)3111111000000000000
New Rank (i)123456789101112131415161718
E9 = 1
Adjusted Citations (Ci)3011111000000000000
New Rank (i)123456789101112131415161718
E10 = 1
Adjusted Citations (Ci)2911111000000000000
New Rank (i)123456789101112131415161718
E11 = 1
Adjusted Citations (Ci)2811111000000000000
New Rank (i)123456789101112131415161718
E12 = 1
Adjusted Citations (Ci)2711111000000000000
New Rank (i)123456789101112131415161718
E13 = 1
Adjusted Citations (Ci)2611111000000000000
New Rank (i)123456789101112131415161718
E14 = 1
Adjusted Citations (Ci)2511111000000000000
New Rank (i)123456789101112131415161718
E15 = 1
Adjusted Citations (Ci)2411111000000000000
New Rank (i)123456789101112131415161718
E16 = 1
Adjusted Citations (Ci)2311111000000000000
New Rank (i)123456789101112131415161718
E17 = 1
Adjusted Citations (Ci)2211111000000000000
New Rank (i)123456789101112131415161718
E18 = 1
Adjusted Citations (Ci)2111111000000000000
New Rank (i)123456789101112131415161718
E19 = 1
Adjusted Citations (Ci)2011111000000000000
New Rank (i)123456789101112131415161718
E20 = 1
Adjusted Citations (Ci)1911111000000000000
New Rank (i)123456789101112131415161718
E21 = 1
Adjusted Citations (Ci)1811111000000000000
New Rank (i)123456789101112131415161718
E22 = 1
Adjusted Citations (Ci)1711111000000000000
New Rank (i)123456789101112131415161718
E23 = 1
Adjusted Citations (Ci)1611111000000000000
New Rank (i)123456789101112131415161718
E24 = 1
Adjusted Citations (Ci)1511111000000000000
New Rank (i)123456789101112131415161718
E25 = 1
Adjusted Citations (Ci)1411111000000000000
New Rank (i)123456789101112131415161718
E26 = 1
Adjusted Citations (Ci)1311111000000000000
New Rank (i)123456789101112131415161718
E27 = 1
Adjusted Citations (Ci)1211111000000000000
New Rank (i)123456789101112131415161718
E28 = 1
Adjusted Citations (Ci)1111111000000000000
New Rank (i)123456789101112131415161718
E29 = 1
Adjusted Citations (Ci)1011111000000000000
New Rank (i)123456789101112131415161718
E30 = 1
Adjusted Citations (Ci)911111000000000000
New Rank (i)123456789101112131415161718
E31 = 1
Adjusted Citations (Ci)811111000000000000
New Rank (i)123456789101112131415161718
E32 = 1
Adjusted Citations (Ci)711111000000000000
New Rank (i)123456789101112131415161718
E33 = 1
Adjusted Citations (Ci)611111000000000000
New Rank (i)123456789101112131415161718
E34 = 1
Adjusted Citations (Ci)511111000000000000
New Rank (i)123456789101112131415161718
E35 = 1
Adjusted Citations (Ci)411111000000000000
New Rank (i)123456789101112131415161718
E36 = 1
Adjusted Citations (Ci)311111000000000000
New Rank (i)123456789101112131415161718
E37 = 1
Adjusted Citations (Ci)211111000000000000
New Rank (i)123456789101112131415161718
E38 = 1
Adjusted Citations (Ci)111111000000000000
New Rank (i)123456789101112131415161718
E39 = 1

The sum of the 39 E values is 59. The EM′-index is the square-root of this sum, thus EM′ = 7.6811.

History

YearEM′
19971.0000
19982.6458
19994.5826
20005.6569
20017.6811
20029.6437
200311.3137
200413.0384
200514.6969
200616.1864
200718.3576
200820.0749
200921.9089
201024.0832
201126.0384
201227.8388
201329.3598
201431.2730
201532.6956
201634.4674
201736.1109
201837.3229
201938.5097
202039.4715
202140.5832
202241.9404
202343.0232
202444.0000
202544.4635

References