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Letter to the Editor

Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep
Evolutionary Relationships Equally Well
Michael S. Rosenberg and Sudhir Kumar
Department of Biology, Arizona State University

The wealth of data available for molecular phylo-
genetic analyses is expanding at an exponential pace.
As data sets have become larger, it has become increas-
ingly critical to understand the advantages and disad-
vantages of using various phylogenetic inference meth-
ods. Four inference methods based on three optimization
criteria are commonly used to reconstruct evolutionary
history from molecular data: neighbor joining (NJ), min-
imum evolution (ME), maximum parsimony (MP), and
maximum likelihood (ML). The overall efficiency and
performance of these methods in reconstructing the true
tree is known to vary with substitution rate, transition-
transversion ratio, and sequence divergence (Miyamoto
and Cracraft 1991; Nei and Kumar 2000).

Computer simulation has proven to be an excellent
means of assessing the performance of tree-building
methods (reviewed in Nei and Kumar 2000, chapter 9).
It can be used to examine the overall performance of a
method or specific aspects of its performance (e.g., Hil-
lis 1996; Strimmer and von Haeseler 1996; Kim 1998;
Nei, Kumar, and Takahashi 1998). Kumar and Gadagkar
(2000) extended the use of simulation to examine the
relative performance of NJ in reconstructing deep and
shallow nodes. They found that NJ reconstructs deep
branches as efficiently as shallow branches, where
branch depth is defined as the minimum number of ter-
minal taxa found between the two subtrees joined by the
branch. This measure is appropriate because it estimates
the complexity of inferring a branch by defining the
minimum number of taxa that must be joined; deeper
branches require more taxa and thus have higher com-
plexities than shallow branches (Kumar and Gadagkar
2000). In this paper, we expand that study to include the
ME, MP, and ML methods to examine how these meth-
ods perform under Jukes-Cantor (JC) model (Jukes and
Cantor 1969) and a more complex Hasegawa, Kishino,
and Yano (1985) (HKY) model of nucleotide substitu-
tion. We also look at how differences in choices within
an inference method, e.g., the use of step matrix versus
unweighted parsimony or Jukes-Cantor versus Tamura-
Nei distance, affects the outcome. These simulations
will allow us to examine the relative efficiencies among
branch depths and among phylogenetic inference
methods.
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We simulated DNA sequence evolution on model
trees using both the Jukes-Cantor and the HKY models
of nucleotide substitution. All simulations were repeated
with sequence lengths of 200 and 500 sites. The overall
substitution rates (measured as the number of substitu-
tions per site) covered a 10-fold difference. For JC, we
used five substitution rates, ranging from r 5 0.00625
to r 5 0.0625, with three intermediate rates (r 5
0.01875, 0.03125, and 0.046875). For HKY, we used
three substitution rates, ranging from r 5 0.0035 to r 5
0.035, with an intermediate rate of r 5 0.0175. We used
slower substitution rates for the HKY simulations in or-
der to prevent the largest distances from becoming un-
defined due to extreme divergence. The JC and HKY
results are comparable because there is a large degree
of overlap between their rate ranges. For the HKY sim-
ulations, transition/transversion ratios and nucleotide
frequencies were chosen after Takahashi and Nei (2000).
Two transition/transversion rate ratios, R 5 2 and R 5
5, and two sets of nucleotide frequencies were used. In
the first, values of gA 5 0.15, gC 5 0.35, gG 5 0.15,
and gT 5 0.35 were used; in the second, values of gA
5 0.10, gC 5 0.40, gG 5 0.10, and gT 5 0.40 were
used.

Model trees for each simulation were obtained fol-
lowing Kumar and Gadagkar (2000). Templates from
each of two six-taxon models (A and C from Kumar
and Gadagkar 2000) were concatenated to construct
trees containing 6, 18, 36, 54, or 96 taxa. The expected
interior branches in both A and C families of trees were
kept equal, allowing one to study the performance of
the methods in reconstructing branches as a function of
depth alone (Kumar and Gadagkar 2000). The HKY
simulations were performed only on model trees of 18,
36, and 54 taxa; the tips of these trees were shortened
to reduce the maximum pairwise distance between spe-
cies in order to prevent the Tamura-Nei distance (Ta-
mura and Nei 1993) from becoming undefined.

Simulations were performed by calculating the ex-
pected number of substitutions on each branch accord-
ing to the substitution model, picking a random number
from a Poisson distribution with mean equal to that ex-
pected to determine the number of realized substitutions
(Kumar and Gadagkar 2000), and then randomly picking
sites and allowing them to change according to the mod-
el. Root sequences were random, with expected base
frequencies being equal for JC or matching the frequen-
cies listed above for HKY. After each simulation, the
resultant sequences were examined in a pairwise manner
for extreme divergence. Under JC, if the proportion of
divergent nucleotides (p-distance) between any pair was
$0.75, the Jukes-Cantor distance could not be calculat-
ed and the simulation was repeated. A similar procedure
was used for the HKY simulations to allow the calcu-
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lation of the Tamura-Nei distance. The resultant tip se-
quences were then used for analysis in PAUP* 4.0b4a
for Windows (Swofford 2000).

For the JC simulations, the NJ, ME, MP, and ML
methods were all used to reconstruct the phylogenies. In
this case, various combinations of model tree, sequence
length, substitution rate, and tree size led to 100 sets of
parameters. Each set consisted of 500 replicate simula-
tions. A single set (model C, 96 taxa, r 5 0.0625, 200
sites) was dropped because all simulations produced at
least one pair of tip sequences with p-distance $ 0.75.
Jukes-Cantor distances were used for NJ and ME, and
a JC model was used for ML; MP was strictly
unweighted.

For HKY, the various combinations led to 144 sets
of parameters. In this case, the phylogenies were esti-
mated under a variety of methods. ME was used to es-
timate the phylogeny using the both the Tamura-Nei dis-
tance (ME-TN) and the Jukes-Cantor distance (ME-JC).
Similarly, ML was used to estimate the phylogenies us-
ing an HKY model and a JC model (ML-HKY and ML-
JC, respectively). MP was used to reconstruct the phy-
logeny in both an unweighted fashion (MP-UW) and a
weighted fashion (MP-SM). The weighted parsimony
was based on a step matrix estimated using the inverse
elements of the HKY transition matrix, which was used
to simulate the data. All in all, eight different methods
of phylogeny reconstruction were used for the HKY
simulations.

For all variations on ME, MP, and ML, a single
heuristic search was performed with nearest-neighbor
interchange (NNI) branch swapping. For ME and ML,
the NJ tree was used as the starting tree for the NNI
search; for MP, a stepwise addition procedure was used
to generate the initial tree. We employed fast heuristic
searches because it has been shown that the true tree is
rarely the most optimal tree (Nei, Kumar, and Takahashi
1998) and that extensive searching often leads to poorer
phylogenetic inference (Takahashi and Nei 2000). The
maximum number of trees that could be saved during
the heuristic search procedures was set to 10,000 (most
of the searches never came close to reaching this limit).
When multiple trees were found in one search, a ma-
jority rule consensus tree (with the option to keep
groups with ,50% if they were compatible with the
tree) was used to create a single resultant tree for each
analysis; this approach was usually used only for MP,
but it was used in ME and ML in rare instances. The
ability of a method to reconstruct the correct tree was
evaluated by the percentage of replicates in which each
correct partition appeared.

In order to make comparisons among methods, a
paired-comparisons t-test (Sokal and Rohlf 1995, p.
352) was performed for each simulation data set, with
a pair of methods as one factor and branch depth as the
other. This test is a special case of a two-way ANOVA
and differs from a standard t-test in taking into account
the fact that each value within one of the groups being
compared is perfectly paired with a value in the other
group. In our case, the average reconstruction efficien-
cies for branches at a specific depth are paired among

methods for a given topology. Similar comparisons were
performed to test whether there were differences in re-
construction efficiency for variation in tree shape (model
A vs. model C trees), number of sites (500 vs. 200),
and, for the HKY simulations, pairs of transition/trans-
version ratios and nucleotide frequency divergences.

Although it may seem that accuracies among
branch depths are not independent, with topological er-
rors cascading through the tree, this intuitive argument
has been shown to be incorrect (Kumar and Gadagkar
2000). This is largely due to the fact that ME, MP, and
ML optimize globally across an entire tree; topological
errors within clades do not affect higher-level clustering
as long as the monophyly of the group is inferred
correctly.

Here, we report the reconstruction efficiency of a
method, which is the percentage of times that a method
correctly reconstructs nodes at a specific branch depth.
Under JC, shallow and deep branches were reconstruct-
ed with equal efficiency for all reconstruction methods
(fig. 1A). There were little differences among trees of
different sizes. Comparisons among the methods (fig.
1B) revealed that ML tended to reconstruct nodes across
all depths correctly slightly more often than NJ, ME,
and MP. The 10% of the time that NJ, ME, and MP
performed better than ML represents the slowest sub-
stitution rates. There was virtually no difference in the
reconstruction efficiencies of ME and NJ. In 70% of the
simulations, there was no difference between MP and
ME/NJ. MP was better than ME/NJ in about 20% of the
cases, and ME/NJ was better than MP in the remaining
10%. Although not overwhelmingly consistent, MP
tended to outperform ME and NJ in the simulations with
the slowest substitution rates, and ME and NJ tended to
outperform MP in the simulations with the fastest sub-
stitution rates.

The results for the HKY simulations are similar to
those for the JC simulations. All of the methods except
for MP-SM reconstructed shallow and deep branches
equally well (fig. 2A). Only MP-SM tended to show a
bias in efficiency; the percentages of correct nodes tend-
ed to be higher for shallow branches than deep branches.
The overall efficiencies of MP-SM were also much low-
er than those for any other method. For comparison
among methods, we first looked at the effect of using
different substitution models within a basic method (fig.
2B). The results were striking and clear: ME-JC was
always as good as or better than ME-TN, MP-UW was
always better than MP-SM, and ML-HKY was always
as good as or better than ML-JC. This suggests that ME
and MP work better with simpler models (even when
the true substitution model is more complex), but ML
works better with a complex model (see also Takahashi
and Nei 2000). We then examined the efficiencies
among the best variants of each method (ME-JC, MP-
UW, and ML-HKY). These results were similar to those
for the JC simulations. ML-HKY was better than ME-
JC and MP-UW about 40% of the time, and ME-JC and
MP-UW were better then ML-HKY about 30% of the
time. Again, ML reconstructed correct nodes more often
at higher substitution rates, and MP and ME did so at
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FIG. 1.—Results of JC simulations. A, The percentages of correct partitions as a function of branch depth for trees of different sizes. B,
Comparison of reconstruction methods; the bars represent the percentages of conditions (parameter sets) where the reconstruction efficiency
(measured as the percentage of correct partitions per branch depth) for one reconstruction method was significantly higher than that of another
method.

FIG. 2.—Results of HKY simulations. A, The percentages of correct partitions as a function of branch depth for trees of different sizes. B,
Comparison of reconstruction methods; the bars represent the percentages of conditions (parameter sets) where the reconstruction efficiency
(measured as the percentage of correct partitions per branch depth) for one reconstruction method was significantly higher than that of another
method.

slower substitution rates. For these analyses, ME-JC
outperformed MP-UW more often than vice versa. At
the intermediate rate (roughly equivalent to the second
slowest rate in the JC simulations), MP-UW tended to
outperform ME-JC. At the slowest rate, when there were
numerous zero branch lengths in the realized trees, ME-
JC outperformed MP-UW.

Under both JC and HKY, all methods were better
able to reconstruct model C trees than model A trees

(results not shown). Similarly, reconstruction efficiency
increased with the number of sites. Under HKY, recon-
struction efficiency was consistently higher with lower
transition/transversion ratios and with more uniform nu-
cleotide frequencies.

Therefore, for the trees and parameters we studied,
our results indicate that, with the exception of step-ma-
trix weighted parsimony, none of the methods show dif-
ferential ability to reconstruct shallow and deep branch-
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es. When there are differences among the methods, it is
because one method is consistently better or worse at
inferring phylogenetic relationships at all depths. For the
trees studied, ML tends to reconstruct correct nodes
more often than other methods do, particularly when the
substitution rate is high. This result is similar to the
results obtained by Hasegawa and Yano (1984) and Ku-
hner and Felsenstein (1994). MP reconstructed correct
nodes more often than did the other methods at the slow-
est substitution rate under the JC model of nucleotide
substitution, but not under the more realistic HKY mod-
el. At the faster substitution rates, MP was often the
worst method. Previous studies have usually found that
MP performs worse than other methods (Hasegawa and
Yano 1984; Li et al. 1987; Sourdis and Nei 1988; Saitou
and Imanishi 1989; Jin and Nei 1990; Kuhner and Fel-
senstein 1994), although Takahashi and Nei (2000)
found that MP performed better than NJ at slow substi-
tution rates. In the HKY simulations, we found that ME
performed better with simple distances (JC) than with
correct, complex distances (TN); a similar result was
found by Takahashi and Nei (2000). ML, however, per-
forms better with the correct model than with a simpler,
incorrect model. This result is similar to the results of
Yang (1996), although he also found that complex mod-
els (HKY) in ML did not work well when the true evo-
lutionary pattern was simple (JC). Branch lengths and
tree size showed little effect on the reconstruction per-
formance of these methods. The results of our study
cannot be directly compared with other work because
we evaluated performance on a nodal basis rather than
as a function of the entire tree (either as the percentage
of correct trees or as the average distance of recon-
structed trees from the correct tree). There is also a large
degree of variation in various parameter choices such as
tree size and shape, substitution rates, and substitution
model across the studies.

The complete failure of step-matrix parsimony in
our simulations was striking. In our computer simula-
tions, this method usually reconstructed the correct
nodes with less efficiency than all other methods under
the corresponding conditions. It also showed the greatest
sensitivity to changes in branch depth, transition/trans-
version ratio, and nucleotide frequency imbalance.
Broughton, Stanley, and Durrett (2000) have recently
examined weighted parsimony with respect to differen-
tial weighting of transitions and transversions (the most
common form of step-matrix parsimony). They found
that this method not only fails to discriminate phylo-
genetic signal from noise in most cases, but will actually
add noise and make phylogenetic analyses worse in
many instances. Our results agree with these results, tak-
ing them a step further since our weights included in-
formation about nucleotide frequency as well as transi-
tion/transversion ratio. We cannot overemphasize the
lack of resolution provided by the use of a step-matrix
in these analyses.

The simulation results given in this paper now ex-
tend the conclusions of Kumar and Gadagkar (2000) to
all three major optimality criteria under both simple and
complex models of nucleotide substitution and provide

a universal baseline profile for these methods. We are
now examining trees with more realistic shapes and
structures, variation in rates across sites, and issues such
as taxon and character sampling and homogeneity of
evolutionary process.
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