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Abstract. Although many methods have been proposed for
analysing point locations for spatial pattern, previous methods
have concentrated on clumping and spacing. The study of
anisotropy (changes in spatial pattern with direction) in point
patterns has been limited by lack of methods explicitly de-
signed for these data and this purpose; researchers have been
constrained to choosing arbitrary test directions or converting
their data into quadrat counts and using methods designed for
continuously distributed data. Wavelet analysis, a booming
approach to studying spatial pattern, widely used in math-
ematics and physics for signal analysis, has started to make its
way into the ecological literature. A simple adaptation of
wavelet analysis is proposed for the detection of anisotropy in
point patterns. The method is illustrated with both simulated
and field data. This approach can easily be used for both global
and local spatial analysis.

Keywords: Ambrosia dumosa; Directional pattern; Global
analysis; Isotropy; Joshua Tree National Park; Local analysis;
Spatial analysis.

Introduction

Point locations are common data in ecology, in-
cluding such diverse phenomena as a population of trees
or bushes, crustacean burrows, or human settlements.
Numerous methods have been proposed to analyse spa-
tial point patterns (e.g. Ripley 1976, 1977, 1979; Diggle
1983; Upton & Fingleton 1985; Perry 1995; Mugglestone
& Renshaw 1996; Perry et al. 1999); most focus on the
determination of whether the points are clumped, regu-
larly arranged, or randomly distributed through space.
One aspect of point patterns that has received relatively
little attention is the analysis of anisotropy. Anisotropy
(or directionality) is the condition where different spa-
tial patterns are found in different cardinal directions;
most spatial analyses assume isotropy or are omnidirec-
tional. While numerous methods have been developed
to detect anisotropy in categorical (nominal) and con-
tinuously distributed data (Oden & Sokal 1986; Isaaks
& Srivastava 1989; Falsetti & Sokal 1993; Simon 1997;
Dale 1999; Rosenberg 2000), little has been done to
study anisotropy in point patterns.

Analysis of anisotropy has tended to follow two
general approaches. In the first, the points are turned

into quadrat counts by overlaying a grid across the
extent of the study; the counts surface may then be
analysed using standard anisotropic techniques for sur-
faces such as angular correlation (Simon 1997) or direc-
tional correlograms (Oden & Sokal 1986; Rosenberg
2000). While this approach can certainly work, it may
also have limited power and will be very dependent on
arbitrary choices of quadrat size and number. In the
second approach, a standard point pattern method, e.g.
Ripley’s K, is calculated only for points related to each
other by a specific direction (Dale 1999). This is re-
peated for different directions and the results are com-
pared to see if different directions lead to different
spatial patterns. A related approach, using the template
concept of spatial analysis (Dale et al. 2002), is to use
oblong, rather than symmetric, templates (i.e., calculate
Ripley’s K using ovals rather than circles). The problem
with the latter approaches is that they do not determine
directions of pattern; they can only be used to test for
patterns in a priori specified directions. Mugglestone &
Renshaw (1996) discuss a method of determining
anisotropy in point patterns as part of two-dimensional
spectral analysis, but the complications inherent in spec-
tral analysis (particularly for more than one dimension)
appear to have discouraged ecologists from making use
of these methods (Haining 1982; Franklin et al. 1985;
Mugglestone & Renshaw 1996).

The purpose of this paper is to introduce an adap-
tation of wavelet analysis to construct a specific method
for determining anisotropic point patterns.

Methods

To start, consider the question of anisotropy relative
to a single observed point within the data set. The
question can be asked whether the remaining observed
points are found more often in certain cardinal direc-
tions than others. This question can be repeated using
every observed point as a fixed focal point and examin-
ing the distribution of the remaining points relative to
each focal point. For a specific focal point, the space
around it is first divided into angular sectors (Fig. 1); for
these purposes 360 1∞-sectors are used, starting with due
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east as 0∞, and proceeding counter-clockwise (as in
Falsetti & Sokal 1993; Rosenberg 2000). Then the
number of points within the study area that fall into each
sector are counted. However, we are not generally inter-
ested in trying to distinguish north to south from south to
north because the ‘direction’ of pattern is arbitrary with-
out additional information on a process; instead we wish
to know whether the spatial pattern in a north-south
bearing is similar or different from that of another
bearing. Therefore, counts from opposite sectors are
combined, to produce 180 sector counts (Fig. 1). These
sectors can be considered a circular transect, with one
end looping around to the other. A particularly interest-
ing method by which to analyse a transect is wavelet
analysis.

Wavelet analysis has been heavily used in math-
ematics and engineering for signal analysis and data
compression (e.g. Chui 1992; Donoho 1993; Strang
1994; Greiner et al. 1996), but has had limited (although
expanding) use in ecology (Bradshaw & Spies 1992;
Bradshaw & McIntosh 1994; Dale & Mah 1998; Nakken
1999; Perry et al. 2002). For our purposes, a wavelet
function g(x) is a scalable windowing function; one way
to picture wavelet analysis is that the wavelet function
describes a template (Dale et al. 2002) which can be
scaled to a desired size, then slid along the transect.
When the template fits the observed data well the value
of the wavelet transform at that position is high, when it
does not, the value is low (this is well illustrated in Fig.
1 of Dale & Mah 1998). There are many possible wave-
let functions to choose for an analysis (Daubechies et al.
1986; Daubechies 1988, 1993; Dale & Mah 1998). One
simple wavelet function is known as the French Top
Hat; this is a three-term function with a discrete square
template. Its formula (Dale & Mah 1998) is:
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Although the choice of a specific wavelet function
will often make little difference in the interpretation of
results, three-term functions are often more accurate
predictors of scale than similar two-term functions, for
the same reasons that three-term local quadrat variance
tends to be more accurate than two-term local quadrat
variance (Dale 1999).

The wavelet transform at position xi for scale bk is
equal to
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where y(x) is the value of the data at position x, n is the
number of observations along the transect, and bk is the
scale of analysis (a discrete distance over which the
wavelet template is stretched). The overall variance for
a given analysis scale, bk is given as
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or the average of the squared wavelet transforms at all
positions for that scale. V(bk) will be maximal when the
wavelet template stretched to that scale best fits the data;
put another way, V(bk) is maximized when bk is equal to
the average size of patches and gaps. Similarly, the
overall variance for a given position, xi, is
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or the average of the squared wavelet transform over all
scales (m is the total number of discrete measured scales).
P(xi) is maximized when wavelet templates centred at
location xi fit the data better than other locations. A
typical wavelet analysis in ecology produces a plot of
each of these functions: variance as a function of posi-
tion P(xi), variance as a function of scale V(bk), and a
surface of the wavelet transform as a function of scale
and position W(bk,xi) (Dale & Mah 1998; Rosenberg
2001; Perry et al. 2002). A simple example is illustrated
in Dale & Mah (1998) and Rosenberg (2001).

Returning to the angular sectors, we can calculate
the wavelet transformation on these sectors by treating
them as a circular transect (remembering that the ends of
the transect are adjacent, Fig. 1). In this case, the posi-
tion xi represents the direction in which each bearing
points q (east-west, northeast-southwest, etc.) and the
scale bk is equal to the angular width of the sector v (1∞,
2∞, 3∞, etc.). This analysis is based on the division of
space into sectors based on a single fixed focal point,
treating the remaining points as random; to estimate the
global spatial pattern the average values of W(vk,qi),

Fig. 1. Transformation of angular sectors into a transect. a.
Division of space around a point into angular sectors.  Sectors
x and y are separated by 180∞ and are summed together. b. The
transect created from the sectors; because the transect is circu-
lar, sectors 1 and 180 are adjacent, as indicated by the arrows.
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V(vk), and P(qi) are calculated across the entire set of
observed points, using each as the fixed focal point. Thus
we use the observed data points to centre each wavelet
analysis, much like second-order analyses such as Ripley’s
K (Ripley 1976) use circles centred on observed data
points. This strategy was chosen, rather than the alterna-
tive of foci being data independent, because the goal of
the analysis is to study the directional relationship among
the observed points and not between the observed points
and arbitrary positions within the study plot.

With a standard transect, we are generally most
interested in V(bk), the relationship between variance
and scale, since this indicates the average size of patches
and gaps across the transect. This aspect of wavelet
analysis is extremely similar to well known quadrat
variance methods such as two- and three-term local
quadrat variances (TTLQV and 3TLQV) (Hill 1973;
Dale & Mah 1998). In the angular wavelet analysis,
however, we are much more interested in P(qi). Peaks in
this plot indicate the angle at which maximal variance
was obtained; this is the direction in which most of the
points can be found. V(vk) and W(vk,qi) are less inte-
resting in this analysis because v  represents the angular
breadth of the sectors (a somewhat meaningless meas-
ure), although one can imagine circumstances where
analysis of vk might be used to describe the breadth of
repeating radial patterns.

One immediate complication is the shape of the
study area. For any non-circular area, there is a potential
directional bias in the sector counts, even for random
point patterns. For example, in a square study area, for
any focal point within the area, sectors pointing along
the diagonals will contain more area than sectors point-
ing directly to a side (Fig. 2a), thus, by random chance
there should be more points found in the diagonal direc-
tions than parallel to the sides. This can be corrected by
converting the sector counts into a density measure
(counts per area); for simplicity sake, each sector count
is divided by the sum of the squared distances of the
focal point to the edges of the study area along the
angular bisector of the sector r r1

2
2
2+ (the dotted lines in

Fig. 2a). This sum is an adequate proxy of the area
encompassed by the sector, in so far as that we assume
the sector can be represented by a pair of pie-shaped
sections of a circle (with the lengths of the perpendicular
bisector from the focal point to the two edges represent-
ing the radius of each pie, r1 and r2) and noting that the
actual area for a pair of sectors of given angular breadth
v  (measured in radians) is vpr1

2/2p + vpr2
2/2p. Be-

cause the p’s cancel out and v/2 is constant for every
sector for all possible focal points, they can be dropped
leaving r r1

2
2
2+  for computational simplicity. Unfortu-

nately this correction itself can cause a problem when
multiple points are located in a corner of the plot (Fig.

2b). The area encompassed by sectors roughly perpen-
dicular to the bisector of the corner (Fig. 2b) is ex-
tremely small relative to the area of sectors generated
from the centre of the plot or which point into the corner.
If there happens to be a second point in the corner, this
count is given extremely high weight due to the tiny area
and may result in a phantom peak. This problem may be
even more serious with plots of irregular geometry.
Since this corner problem is essentially an edge effect
(Haase 1995), an obvious solution is to only use points
located toward the centre of the plot as foci.

In order to separate true patterns from random fluctu-
ations, the significance of the wavelet analysis can be
determined through a Monte Carlo simulation, wherein
one simulates random point patterns containing the same
number of points (in the same shaped plot) as in the
observed data. This procedure is repeated many times,
and the distribution of the P(qi) values from the simu-
lated random patterns are used to judge the observed
P(qi) values. Because our null hypothesis is isotropy, a
random pattern should be expected to have the same
P(qi) for all possible directions. We can therefore calcu-
late the simulation distribution over not only multiple
randomization replicates but also over all qi. Thus for a
given data set, the maximum value of P(qi) is identi-
fied for all angles among all of the simulations; this
single value can be used as the critical value for iden-
tifying significant patterns in all directions. It also poten-
tially leads to a substantial decrease (a 180-fold reduc-
tion) in computation time; using this conservative shortcut,
100 replicate simulations yield the equivalent of 18 000
replicates without its use. This approach should hold
true for plots of any size and shape since the rescaling of
counts by area removes the effect of shape on the
marginal distribution of P(qi).

The use of this method is illustrated with a series of
examples, ranging from random patterns to obvious
patterns to obscure patterns, including both artificial

Fig. 2. Illustration of the problems of study area shape. a.
Dashed lines demarcate two sectors; the dotted lines indicate the
angular bisectors of each sector. The diagonal sector contains
more area than the vertical sector. b.  A small corner of a larger
plot; the sector containing the open point will have abnormally
high weight due to the relatively small area it encompasses.
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and field data sets. For all of these analyses, the space
around each point was divided into 1∞ sectors, the wave-
let scale (vk) ranged from 1∞ to 45∞, and the French Top
Hat wavelet was used as the windowing function g(x).
Direction was measured counter-clockwise from due
east (i.e. 0º is east, 90∞ is north, etc.). Only points located
in the middle 50% of the plot (as measured from the
edges) were used as foci (this is conservative since the
corner effect should only be a problem for the extreme
corners). Significance levels were generated using 100
random replicates and averaging across all angles. All
analyses were performed in the spatial statistics pro-
gram PASSAGE (Rosenberg 2001).

Results

Artificial data

Three sets of simulated spatial patterns were used to
illustrate the method: random patterns, obvious pat-
terns, and obscure patterns. Fig. 3 presents the results of
the analysis on two random point patterns, one consist-
ing of 100 points, the other of 1000 points. As would be
expected, the results indicate no directional bias; P(qi)
fluctuates randomly with direction and the magnitude of
the peaks is well within the standard range found from
other random simulations. Fig. 4 presents the results for
three obvious and strong point patterns. Each of these
plots consists of 1000 points; a fixed pattern with
Gaussian error was set for each plot, with 20% of the
points purely random. The method clearly indicates the

anisotropic pattern for every case. The pattern in Fig. 4c
has a broader variance than those in Fig. 4a-b; this can
be seen in both the relative breadth of pattern on the
actual plotted maps, as well as the breadth of the peaks
in the results of the wavelet analyses and the smaller
overall variance (variances can be directly compared
only when the plots are the same shape, scaled to the
same area, and contain the same number of points).

The obscure patterns were simulated under very
similar conditions. Each represents ten randomly placed
parallel 45∞ (northeast/southwest) diagonal swaths of
points (1000 total); the swaths have moderately large
variances and heavily overlap, and are usually not clearly
distinguishable. The difference among the plots is the
percentage of points that were purely random and did
not follow the set diagonal pattern: 10%, 20%, 33%,
50%, 67%, and 75%. The method is able to correctly
identify the 45º trend in the cases with random points
consisting of up to 50% of the plot (Fig. 5a-d). When
67% of the points are random (Fig. 5e), there is a barely
significant peak at 175∞ and a slightly lower peak at 45∞.
Although no definitive pattern is indicated by this analy-
sis (with more simulated replicates we would almost
certainly be able to reject a pattern in this curve), the fact
that virtually the entire curve exceeds the average values
found from random simulated data indicates that there
might be some very weak patterning in the data. This is in
contrast to the case where 75% of the points were random
(Fig. 5f) and the results are otherwise indistinguishable
from the simulated data sets. These plots also reveal
something of the stochastic nature of simulation; the data
simulated with 50% of the points random (Fig. 5d) shows

Fig. 3. Angular wavelet analy-
sis of random point patterns.
a. 100 points; b. 1000 points.
Dotted squares outline the
middle 50% of each plot and
indicate points used as foci in
the analysis. The long dashed
line indicates the maximum
peak found from 100 simu-
lated random replicates; the
dotted line the mean.
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a stronger pattern (both visually and analytically) than
the data simulated with only 33% of the points random
(Fig. 5c).

Field data

The first field data set consists of a complete 1984
census of 4358 Ambrosia dumosa plants in a 1-ha (100
m ¥ 100 m) plot from Joshua Tree National Park in
California (Miriti et al. 1998), and has previously been
used as an example in a number of spatial analyses
(Miriti et al. 1998; Dungan et al. 2002; Perry et al.
2002). A. dumosa is an abundant, long-lived, drought
deciduous shrub found on well-drained soils (Miriti et
al. 1998). The study site was selected deliberately to
minimize heterogeneity attributable to environmental
variation. Previous work has shown small-scale clump-
ing (Perry et al. 2002) and a significantly positive asso-
ciation between the locations of adult and juvenile plants
(Miriti et al. 1998). Fig. 6a shows the study plot and the
results of the angular wavelet analysis on this data. In
the plot of the data, there appears to be some diagonal

streaking through the plot between 135∞ and 180∞. These
streaks have been noted in previous studies of these
data, but were virtually unidentifiable by other aniso-
tropic methods (Perry et al. 2002). The angular wavelet
analysis clearly identifies the streaks by virtue of the
large peak at 165∞ (Fig. 6a). It also identified a pattern
around 15∞, not clearly visible to the eye.

The second set of field data consists of 2015 isopod
burrow locations collected by S. Citron-Pousty in the
northern Negev Desert, Israel, in 1997. Burrow loca-
tions were exhaustively mapped over an irregular shaped
7.56-ha area. These data have been used as examples for
other spatial analyses (Dungan et al. 2002). The pattern
is clearly anisotropic (Fig. 6b), and although the pattern
curves somewhat across the plot, most of the points are
arrayed at roughly 45∞. The method not only reveals this
main trend, but also recognizes a kink in the pattern,
with many points aligned somewhat more vertically,
recognizable as the secondary small peak at 75º. These
patterns reflect burrow alignment across three separate
watersheds (S. Citron-Pousty pers. comm.).

Fig. 4. Angular wavelet analysis
of obvious point patterns. Each
consists of 1000 points. Dotted
squares outline the middle 50%
of each plot and indicate points
used as foci in the analysis. The
long dashed line indicates the
maximum peak found from 100
simulated random replicates.
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Fig. 5. Angular wavelet analysis of obscure point patterns. Each consists of 1 000 points in a general 45∞ trend. Each plot has a different
percentage of points that are purely random:  a. 10%; b. 20%; c. 33%; d. 50%; e. 67%; f. 75%. Dotted squares outline the middle 50%
of each plot and indicate points used as foci in the analysis. The long dashed line indicates the maximum peak found from 100
simulated random replicates; the dotted line the mean.

Fig. 6. Angular wavelet analy-
sis of real data sets. a. Analysis
of 4358 Ambrosia dumosa plants
in a 1-ha square plot in Califor-
nia; b. Analysis of 2015 isopod
burrows from the northern
Negev Desert, Israel. Dotted rec-
tangles outline the middle 50%
of each plot and indicate points
used as foci in the analysis. The
long dashed line indicates the
maximum peak found from 100
simulated random replicates; the
dotted line the mean.
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Discussion

The angular wavelet analysis seems to be very good
at identifying anisotropic patterns in point location data.
Once the division of space around a focal point is used to
create a circular transect, wavelet analysis is more suited
for the analysis of anisotropy than other commonly used
transect methods (e.g. blocked quadrat variance, paired
quadrat variance, TTLQV, spectral analysis, etc.) be-
cause it is the only method which provides information
on the location (in our case, direction) of pattern; the
other methods only provide information on scale. Wave-
let analysis should play a large role in ecological spatial
analysis in the future because of its greater flexibility
than more established methods. To some extent, wave-
let analysis is more general than many classic transect
methods because specific choice of the wavelet function
will perform essentially the same analysis as these clas-
sic methods. For example, the V(bk) plot from a French
Top Hat wavelet is equivalent to 3TLQV (Dale & Mah
1998).

In most of the examples presented here, the aniso-
tropic pattern in the data was obvious from a simple
inspection of a point plot, and it could be argued that an
elaborate method for the identification of anisotropy is
unnecessary. While this is true for many patterns (e.g.
Figs. 4, 5a-d, and 6b), trends can be much more subtle in
others (e.g. Fig. 6a). Humans are notoriously bad at
distinguishing randomness in a pattern; manual con-
struction of a ‘random’ pattern almost always leads to
significant regularity among points (pers. obs.). How-
ever, no method should ever completely replace the
visual inspection of one’s data and the importance and
utility of mapping and simple summary statistics as a
first step in any spatial analysis cannot be overempha-
sized (Korie et al. 1998; Perry et al. 2002).

Spatial analysis is traditionally global: the spatial
pattern is analysed across the entire extent of the data. In
recent years there has been a surge of interest in local
spatial analysis: spatial pattern analysed for specific
locations within the study area which apply only to
those locations (Anselin 1995; Getis & Ord 1995; Ord &
Getis 1995; Sokal et al. 1998a, b). The method presented
here easily allows for local analysis, simply by retaining
the wavelet analysis for an individual focal point rather
than averaging over all points.

Distances among points play no role in the described
analyses. Distance information could easily be incorpo-
rated into the analysis by only counting points within a
certain range of the focal point. This could be used to
restrict the analysis to a smaller range, or could be
repeated for a series of distance classes (e.g. 0-5 m, 5-10
m, 15-20 m, etc.) the way is commonly done in
correlogram or variogram analysis (Sokal & Oden 1978;

Cliff & Ord 1981; Isaaks & Srivastava 1989). This
could allow one to tease apart scale effects, since local
(short distance) patterns need not be identical to global
(long distance) patterns (Dungan et al. 2002; Perry et al.
2002).

This method has been described for analysis of
univariate patterns. Multivariate point pattern analysis
(e.g. analysing the relative spatial distribution of two
plant species) is another strong area of interest in ecol-
ogy. Many existing point pattern analysis methods can
easily be adapted to multivariate data (Dale 1999; Dale
et al. 2002), including some of those for anisotropy (e.g.
Haase 2001). The current method could also clearly be
adapted to multivariate data by repeating the analysis
such that only points of a specific type are used as foci
and only points of a different type (for example) are
counted within the sectors.
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