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Abstract
As shown from several long-term and time-intensive studies, closely related, sympat-
ric species can impose strong selection on one another, leading to dramatic examples 
of phenotypic evolution. Here, we use occurrence data to identify clusters of sympa-
tric Sceloporus lizard species and to test whether Sceloporus species tend to coexist 
with other species that differ in body size, as we would expect when there is competi-
tion between sympatric congeners. We found that Sceloporus species can be grouped 
into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be 
larger and have fewer species, following Rapoport's rule and the latitudinal diversity 
gradient. Species richness was positively correlated with the number of biomes and 
elevation heterogeneity of each bioregion. Additionally, most bioregions show signs 
of phylogenetic underdispersion, meaning closely related species tend to occur in 
close geographic proximity. Finally, we found that although Sceloporus species that 
are similar in body size tend to cluster geographically, small-bodied Sceloporus species 
are more often in sympatry with larger-bodied Sceloporus species than expected by 
chance alone, whereas large-bodied species cluster with each other geographically 
and phylogenetically. These results suggest that community composition in extant 
Sceloporus species is the result of allopatric evolution, as closely related species move 
into different biomes, and interspecies interactions, with sympatry between species 
of different body sizes. Our phyloinformatic approach offers unique and detailed in-
sights into how a clade composed of ecologically and morphologically disparate spe-
cies are distributed over large geographic space and evolutionary time.
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1  | INTRODUC TION

The current availability of geographically informed, organismal 
data offers opportunities for new insights into evolutionary pro-
cesses such as trait divergence and sympatric diversification that 
have been traditionally studied through time-intensive fieldwork. 
Often, selective forces lead to phenotypes that allow species to oc-
cupy distinct ecological niches while living in sympatry with other 
closely related species (Lack, 1947; López Juri et al., 2015; Pacala & 
Roughgarden, 1982). This is particularly apparent in adaptive radi-
ations in which species evolve specialized morphologies that allow 
them to exploit distinct microhabitats. For example, the Caribbean 
anoles have evolved disparate limb morphologies that allow them 
to occupy different ecological niches, thereby reducing competition 
(Losos, 1992; Losos et al., 1998). Similar examples of adaptive radia-
tion and convergent evolution (ecomorphs) have been found in other 
island species (Darwin's finches: Grant & Grant, 2006, Hawaiian sil-
verswords: Blonder et al., 2016, Hawaiian spiders: Gillespie, 2004) 
and on larger scales, for example, in Europe and North America 
fishes (Lamouroux et  al.,  2002). Coexistence with closely related 
species and niche-partitioning are clearly also important drivers for 
mainland communities (Kartzinel et al., 2015; Mujic et al., 2016), but 
their effects can be difficult to detect, for example, as in the com-
position of plants in the Amazon rain forest (Kraft & Ackerly, 2010) 
and the assemblage of bat species on a latitudinal gradient across the 
Americas (Stevens et al., 2003). In part, these mainland community 
patterns are obscured by power limitations of the existing methods 
(Kraft & Ackerly, 2010) and the relatively small sample sizes imposed 
by the time-intensive nature of collecting the necessary data. Here, 
we use the power of massive data available in online databases and 
recent advances in data manipulation and statistical modeling to 
study patterns of sympatry and body size across a diverse genus of 
lizards.

Gause's competitive exclusion principle dictates that two 
species occupying the same niche should not be able to coexist 
(Gause,  1934; Mayfield & Levine,  2010). However, it has been 
long known that closely related taxa occur together more often 
than expected by chance alone (Elton,  1946; Moreau,  1948; 
Williams,  1947) and may also expand the range of physical con-
ditions in which other species can live (e.g., by providing ref-
uges: Bulleri et al., 2016) or shape phenotypes through character 
displacement (Dayan & Simberloff,  2005; Losos,  2000; Moritz 
et al., 2018; Schluter & McPhail, 1993). For example, the pletho-
dontid salamanders, Plethodon hoffmani and P. cinereus, are iden-
tical when living in allopatry (Adams & Rohlf,  2000). However, 
when the two species are in sympatry, they exhibit differences in 
jaw morphology that allow them to partition their prey resources 
so that P.  hoffmani eats larger, faster prey while P.  cinereus eats 
smaller, slower prey (Adams, 2004). Sympatric European lacertid 
lizards similarly exhibit small changes in head morphology that 
allow the partitioning of food resources by species, sexes, and 
age category (Herrel et al., 2001). Other studies have emphasized 
evolution via selective migration (Gillespie, 2004; Li et al., 2015), 

phenotypic convergence in older lineages (Tobias et al., 2014), and 
interactions with phylogenetically unrelated competitors (Wilcox 
et al., 2018). Theoretical discussions of these forces (e.g., Edwards 
et al., 2018; Mittelbach and Schemske 2015) suggest that there is 
still much to learn about the selective impact of phenotypically 
similar sympatric taxa.

Body size is a convenient and effective trait for analyzing the 
relationship between abiotic factors, like climate, and morphology 
(Bergmann,  1847), and often serves as a starting point to under-
stand trait divergence in sympatric species (Echeverría-Londoño 
et  al.,  2018; Thomas et  al.,  2009). The relationship between body 
size and sympatry has been studied in many groups of amphibi-
ans and reptiles (Dunham et al., 1978; Kozak et al., 2009; Moen & 
Wiens, 2009; Okuzaki et al., 2010; Soule, 1966). For example, in the 
Australian Gehyra lizards, differences in body size are greater in sym-
patric lineages than in allopatric lineages (Moritz et al., 2018) sug-
gesting that body size divergence is a key element of the process by 
which species coexist.

The genus Sceloporus serves as an ideal system to study the 
forces involved in the evolution of species in sympatry and how 
body size is distributed over geographic space and evolutionary 
time. Sceloporus lizards, also known as spiny or fence lizards, have 
been well studied in terms of behavior (Carpenter et al., 1977; Hews 
et  al.,  2013), physiology (Angilletta et  al.,  2004; Beal et  al.,  2014), 
and phylogenetic relationships (Leaché et al., 2016; Sites et al., 1992; 
Wiens et al., 2010). Moreover, the genus Sceloporus has a large geo-
graphic distribution that encompasses much of North America and 
Central America (Sites et al., 1992), is speciose with nearly 100 spe-
cies (Leaché et  al.,  2016), and possesses a tremendous amount of 
ecological diversity inhabiting lowland deserts, high-elevation alpine 
forests, and grasslands (IUCN, 2018). Sceloporus species also can be 
found in sympatry with other congeners at varying degrees, but this 
has only been studied at a small, local scale (Grummer et al., 2015; 
Serrano-Cardozo et al., 2008). Although the genus Sceloporus does 
not possess a tremendous amount of morphological disparity, it of-
fers an intriguing opportunity for discovery analyses using publicly 
available data over a large geographic area.

Here, we use information from large, open-source databases to 
study the biogeographic and phenotypic patterns of congeneric sym-
patry among Sceloporus species. First, we use spatial distribution data 
and phylogenies to ask how species are spatially grouped, and how 
sympatry relates to phylogenetic divergence. Specifically, do closely 
related species cluster geographically or are they evenly spread across 
the landscape? In particular, we apply a bioregions approach (Vilhena 
& Antonelli, 2015). Bioregions are a powerful way to describe species 
distributions and can be used in evolutionary biology to infer historical 
processes that led to current day distributional patterns (Matzke, 2014; 
Ree & Smith, 2008). We also test whether characteristics of each geo-
graphic area correlate with species richness to determine if particular 
factors are contributing to the biogeographic patterns of the clade. 
Then, we infer how body size is distributed over different spatial re-
gions and has evolved through time. Finally, we combine occurrence 
data, phylogenies, and body size to ask whether species of different 
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body sizes co-occur more often than by chance to understand how 
phenotypic diversity varies across space.

2  | MATERIAL AND METHODS

2.1 | The biogeography of congeneric sympatry

We obtained point-occurrence data for 69 species of Sceloporus liz-
ards from the Global Biodiversity Information Facility (Tgbif, 2018), 
using the “rgbif” v0.9.9 package (Chamberlain,) in R (R Core 
Team, 2017). The most recent phylogenetic analysis of the genus by 
Leaché, Banbury (Leaché et al., 2016) identifies 97 Sceloporus spe-
cies and sampled 86 species to construct the phylogeny. Our study 
includes 69 of these species that are also represented in GBIF. The 
remaining species are known from very few records. The 13 species 
that are identified by the Leaché, Banbury (Leaché et al., 2016) phy-
logeny but not in our current study are roughly evenly distributed 
geographically, phylogenetically, and by size, such that excluding 
them from our analyses is unlikely to bias our results. For each spe-
cies in our study, we removed all points that were likely errors, clearly 
falling outside of the geographic ranges provided by International 
Union for Conservation of Nature (IUCN, 2018). Our final data set 
consisted of 133,665 occurrence points for the 69 species (Table 1).

We used the Infomap Bioregions application to determine how 
species are spatially grouped (Edler et al., 2017). We used this approach 
because the program uses a novel adaptive resolution method that is 
less sensitive to biases from incomplete species distribution data (Edler 
et  al.,  2017). Infomap Bioregions is a network approach (Vilhena & 
Antonelli, 2015) that uses adaptive spatial resolution to cluster point-
occurrence data from multiple species into geographic grid cells. The 
software creates a bipartite network of species and grid cells, connect-
ing each species to geographic cells in which it occurs. The program 
then aggregates geographic cells for which there are occurrence points 
into larger geographic regions, creating larger regions in areas with sim-
ilar species composition. The result is a detailed map with designated 
bioregions that are composed of unique species assemblages.

The Infomap Bioregions application has several input parame-
ters including maximum and minimum cell size and maximum and 
minimum number of occurrence points per cell. We tested various 
combinations of parameters and found that a minimum cell size 
below 2° produced patchy, discontinuous bioregions. Setting the 
maximum cell size above 4° led to large, uninformative regions that 
included areas where we know that species do not co-occur. As a 
result, we set the maximum cell size to 4° and the minimum cell size 
to 2°. Changing the maximum and minimum cell capacities (num-
ber of incident points/cell) had little impact on our findings except 
in slightly changing the shapes of a few bioregions. Therefore, we 
used the default minimum and maximum cell capacities of 100 and 
10, respectively. We also provided the Leaché, Banbury (Leaché 
et al., 2016) phylogenetic tree as an input parameter for the anal-
ysis. Once the software produced the bioregions, we summarized 
the total number of biomes as described by Olson, Dinerstein (Olson 

et al., 2001) within each bioregion. Lastly, we used a linear model to 
explore the relationship between biome heterogeneity and species 
richness across bioregions.

We then used “phytools” v0.6–99 (Revell,  2012) in R (R Core 
Team, 2017) to analyze the relationship between phylogenetic re-
latedness and geographic distributions. First, we plotted a phylog-
eny of Sceloporus lizards (Leaché et al., 2016) onto a map of North 
America. Then, we linked each taxon to the map at the mean latitude 
and longitude for all occurrence records for that species. We omit-
ted species that were not included in the Leaché, Banbury (Leaché 
et al., 2016) phylogeny. Additionally, we used the package “picante” 
(Kembel et al., 2010) to calculate the mean pairwise distance (MPD) 
between species assemblages to test whether bioregions show a 
pattern of phylogenetic overdispersion or underdispersion. We used 
the standardized effect size of the MPD and p-value quantiles to 
evaluate the results.

Finally, we estimated Spearman's correlation coefficient be-
tween species richness (the number of species in a bioregion) and 
geographic Area (km2), the latitude at the region centroid (northing 
in km), and elevation heterogeneity in meters using a horizontal grid 
spacing of 30 arc seconds (the standard deviation of elevation as 
infered from the digital elevation model: GTOPO 30; United States 
Geological Survey, 2012) in R (R Core Team, 2017).

2.2 | Body size evolution

We gathered Snout-to-Vent Length (SVL) measurements for adult 
males from each of the Sceloporus and outgroup species from the 
literature (Table  1) to test how body sizes have evolved through 
evolutionary time and are distributed across the phylogeny. First, 
we generated a histogram with the mean SVLs of each Sceloporus 
species and used the natural breaks in the data to visually generate 
three body size categories: large, medium, and small. We then used 
“phytools” v0.6–99 (Revell, 2012) in R (R Core Team, 2017) to recon-
struct ancestral body sizes of the continuous SVL values using three 
models of evolution: Brownian motion (BM), Ornstein-Uhlenbeck 
(OU), and Early-burst (EB). We used log-likelihoods to compare the 
model fit and checked for convergence. We then estimated the de-
gree of phylogenetic signal (Pagel's λ) for the SVL size data to de-
termine the degree to which phylogenetic history constrains body 
size evolution. We performed this analysis using phylogenies from 
both Leaché, Banbury (Leaché et  al.,  2016) and Wiens, Kuczynski 
(Wiens et al., 2010), but since our results were similar both in terms 
of phylogenetic signal and ancestral state reconstruction, we pre-
sent only the results using the Leaché, Banbury (Leaché et al., 2016) 
phylogeny here.

2.3 | Sympatry and body size evolution

For each species, we estimated the degree to which the focal taxon 
occurs with species of the same or different body size. To do this, 
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TA B L E  1   Number of occurrence points used to characterize the range of each species, the mean Snout-to-Vent Length (SVL, with 
number of individuals used to obtain that estimate in parentheses), and the published reference from which we obtained body size data. Also 
included are size data for the outgroup used in the ancestral reconstruction analysis

Species

N 
occurrence 
points

Average SVL (mm) 
(N) Source

Sceloporus adleri 426 65.3 (14) Fitch (Fitch, 1978)

Sceloporus aeneus 2035 53.0 (148) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus arenicolus 141 54.5 (507) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus bicanthalis 326 43.6 (56) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus bulleri 140 100.7 (10) Fitch (Fitch, 1978)

Sceloporus carinatus 397 52.9 (2) Rivera et al., unpublished

Sceloporus cautus 341 67.9 (11) Smith (Smith, 1939)

Sceloporus chrysostictus 2089 54.0 (163) Fitch (Fitch, 1978)

Sceloporus clarkii 653 103.0 (56) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus consobrinus 1888 60.3 (45) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus couchii 827 58.0 (32) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus cowlesi 1,043 62.5 (2) Rivera et al., unpublished

Sceloporus cryptus 58 61.6 (6) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus cyanogenys 1,066 96.0 (8) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus dugesii 393 65.9 (7) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus edwardtaylori 143 107.0 (?) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus formosus 1,106 68.0 (111) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus gadoviae 606 64.9 (6) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus graciosus 10,982 55.2 (182) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus grammicus 15,050 60.1 (412) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus grandaevus 835 72.1 (5) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus heterolepis 55 59.7 (37) Smith (Smith, 1939)

Sceloporus horridus 2,825 85.5 (82) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus hunsakeri 641 73.9 (20) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus insignis 63 89.5 (10) Fitch (Fitch, 1978)

Sceloporus internasalis 174 80.1 (2) Rivera et al., unpublished

Sceloporus jalapae 582 49.3 (17) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus jarrovii 3,825 69.7 (668) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus licki 432 71.4 (24) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus maculosus 133 48.4 (7) Smith (Smith, 1939)

Sceloporus magister 4,807 111.5 (53) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus malachiticus 667 79.1 (146) Fitch (Fitch, 1978)

Sceloporus megalepidurus 593 47.3 (76) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus melanorhinus 580 84.6 (32) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus merriami 3,071 52.2 (355) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus microlepidotus 2,514 - NA

Sceloporus minor 540 70.3 (169) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus mucronatus 2085 87.0 (146) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus nelsoni 1,146 60.16 (26) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus occidentalis 30,367 68.4 (46) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus ochoterenae 348 48.2 (143) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

(Continues)
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we used a custom-built Python program (Python Core Team, 2018) 
to assemble lists of all pairwise distances between the 133,665 ge-
ographic occurrence points. Then, for each Sceloporus species, we 
compiled a list of sympatric congeners, characterizing each species 
as being sympatric with a second species if at least 10 occurrence 
points for the target species were 5 km or closer to an occurrence 
point for the second species. We then added in the body size data, 
categorizing each species as small, medium, or large, and counting 
the total number of Sceloporus species from each body size category 
occurring in sympatry with each target species. Finally, we calcu-
lated a measure of “Divergent Sympatry” for each species: a chi-
squared value comparing the number of small, medium, and large 

sympatric congeners with the expected number of each size class 
given the distribution of sizes across the genus. We multiplied this 
measure by −1 if the difference between observed and expected 
counts was due to the target species being found more commonly 
with similarly sized congeners for clarity in the visualization of these 
results. We considered the distribution of body sizes at the level of 
bioregions, asking whether the observed number of small, medium, 
and large Sceloporus species in each bioregion differed from that ex-
pected given the frequency of species of each size class in the genus 
as a whole. Lastly, we used a phylogenetic generalized least square 
(PGLS) on SVL using a model of Brownian motion. We extracted the 
residuals of the PGLS and regressed these against the chi-squared 

Species

N 
occurrence 
points

Average SVL (mm) 
(N) Source

Sceloporus olivaceus 2,991 82.9 (34) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus orcutti 2,313 102 (17) Fitch (Fitch, 1978)

Sceloporus ornatus 244 - NA

Sceloporus palaciosi 225 - NA

Sceloporus parvus 782 50.0 (?) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus pictus 110 48.9 (8) Fitch (Fitch, 1978)

Sceloporus poinsettii 3,847 96.8 (79) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus pyrocephalus 462 62.0 (84) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus scalaris 811 45.5 (45) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus scitulus 328 70.2 (2) Rivera et al., unpublished

Sceloporus serrifer 1,153 76.9 (7) Smith (Smith, 1939)

Sceloporus siniferus 3,222 52.5 (235) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus slevini 483 47.5 (2) Smith (Smith, 1939)

Sceloporus smaragdinus 539 67.2 (14) Fitch (Fitch, 1978)

Sceloporus smithi 26 82.4 (57) Smith (Smith, 1939)

Sceloporus spinosus 1960 92.7 (164) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus squamosus 733 51.6 (2) Rivera et al., unpublished

Sceloporus subpictus 29 63.5 (1) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus taeniocnemis 899 77.2 (2) Rivera et al., unpublished

Sceloporus teapensis 458 55.9 (24) Fitch (Fitch, 1978)

Sceloporus torquatus 3,318 101.5 (37) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus tristichus 405 58.6 (24) Fitch (Fitch, 1978)

Sceloporus undulatus 178 55.8 (177) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus vandenburgianus 663 60.2 (34) Fitch (Fitch, 1978)

Sceloporus variabilis 9,255 62.0 (457) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus virgatus 1,299 50.4 (22) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus woodi 287 51.9 (78) Jiménez-Arcos, Sanabria-Urbán (Jiménez-Arcos et al., 2017)

Sceloporus zosteromus 1,262 103.7 (1) Rivera et al., unpublished

Petrosaurus thalassiunus – 110.0 (?) Goldberg and Beaman (Goldberg & Beaman, 2004)

Phrynosoma solare – 115.0 (?) Brennan and Holycross (Brennan & Holycross, 2006)

Urosaurus ornatus – 59.0 (?) Brennan and Holycross (Brennan & Holycross, 2006)

Uta stansburiana – 50.0 (?) Stebbins (Stebbins, 1985)

TA B L E  1   (Continued)
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values from the divergent sympatry analysis to correlate body size 
with our measure of divergent sympatry and taking phylogenetic 
history into account.

3  | RESULTS

3.1 | Patterns of sympatry across bioregions

Using the Infomap Bioregions application and the GBIF occurrence 
data from 69 species of Sceloporus, we identified 16 distinct regions 
(Figure 1; Table 2). Nearly, all regions contained multiple Sceloporus 
species, with the exception of Region 5 that had a single species 
(S.  grandaevus). Conversely, some species (e.g., S.  grammicus and 
S. variabilis) occurred in more than one bioregion because of their 
large distributions (Figure 2).

We found a positive relationship between the number of biomes 
and number of species across bioregions (Figure 1b; LM: F1,14 = 11.17, 
R2 = 0.44, p = .005). For example, Region 2, with only temperate bi-
omes, and Region 3, with only a single subtropical biome, have only 
2 Sceloporus species each (Figure 1; S. consobrinus and S. arenicolus in 
Region 2; S. ndulates and S. woodi in Region 3). In contrast, Region 11 
which contains a wide range of biomes (e.g., arid deserts, savannas, 
dry forests, and rainforests) has 27 Sceloporus species.

We found a latitudinal gradient where the regions with the few-
est species tended to be near the northern part of the genus range, 
while the regions with the largest numbers of species were located 
centrally and to the south (Figure  1). For example, Region 11 and 
Region 14 harbored a large number of species and were closer to the 
equator than Regions 2 and 3.

Overlaying the Leaché, Banbury (Leaché et al., 2016) phylogeny 
on the map (Figures  3 and Figure  4), we found that sister species 

often co-occurred closely in geographic space. This was also sup-
ported by our community structure analysis across bioregions 
(Table 3). We found that the majority of bioregions show a pattern 
of phylogenetic clustering indicated by negative standardized effect 
sizes and small p-value quantiles. For example, the centers of the 
ranges for sister species S. cryptus and S. subpictus are close to each 
other in geographic space, as are the range centers of sister species 
S. adleri and S. scitulus (lower part of Figure 3). Thus, most bioregions 
contained species from only one or a few clades (Figure 4). We found 
that only five bioregions showed a moderate pattern of phylogenetic 
overdispersion, Regions 1, 2, 5, 9, and 15 indicating that these biore-
gion harbor species that are not closely related. One notable excep-
tion was the speciose Region 11 in central Mexico, which contained 
species from almost every clade (N = 27; Figure 4).

We found no relationship between the number of species present 
and land area (Pearson's correlation: ρ = 0.18, df = 14, p > .05) or lati-
tude (Pearson's correlation: ρ = −0.34, df = 14, p > .05) of each biore-
gion. However, the number of species within a bioregion was positively 
related to our measure of elevation heterogeneity (standard deviation 
of elevation) (Pearson's correlation: ρ = 0.51, df = 14, p = .04).

3.2 | Body size evolution

We found three discrete size categories for the Sceloporus clade 
(Figure  5). Additionally, we found that a Brownian motion (BM) 
model of continuous character evolution (log Likelihood: −445.9, 
σ2  =  8.07) best explained the evolution of body size. The OU 
model (log Likelihood: −445.9, σ2 = 8.07, α = 0.0) was identical to 
the BM model because the alpha parameter in the OU model is 
0 indicating only Brownian motion is driving body size evolution. 
The Early-Burst (EB) model did not converge, and therefore, we 

F I G U R E  1   Panel (a) describes the bioregions identified by the Infomap clustering algorithm (Edler et al., 2017). Warmer colors indicate 
bioregions that possess many Sceloporus species, whereas cooler colors reflect regions with few species. Values in parentheses indicate 
the number of species found in each region. Note that several species occur in more than one bioregion. Panel (b) represents the different 
biomes of North America, modified from the original image by Ville Koistinen
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omitted these results. The ancestor to all Sceloporus lizards was 
likely medium in body size, ~76 mm SVL, with larger bodies evolv-
ing only recently in evolutionary time (Figure 6). In addition, body 
size categories tended to cluster phylogenetically (Figure  6). An 
estimate of phylogenetic signal confirmed that body size is evolv-
ing with high phylogenetic constraint (Pagel's λ = 0.99; Log likeli-
hood = 270.34). Thus, closely related species tend to be similar in 
body size. Increases in body size occurred abruptly in a few lin-
eages and were then retained over long periods of evolutionary 
time (Figure 6).

3.3 | Sympatry and body size evolution

Our chi-squared analysis found evidence that small Sceloporus 
species are spatially distributed so that they often co-occur with 
different sized species (Appendix S2). Conversely, large species 
were most often found to co-occur with other large species than 
by chance alone. More than % of small-bodied Sceloporus species 
(14 of 22 species) exhibited positive divergent sympatry, occur-
ring more often with medium- or large-bodied congeners than ex-
pected given the numbers of species in each size class (Figure 7a). 
Five of the 22 small-bodied species exhibited some degree of 
divergent sympatry, and only 3 species showed convergent sym-
patry (occurring primarily with other small-bodied species), and a 

goodness-of-fit test suggested a strong difference between the 
observed counts (14:5:3) and a uniform expectation (Figure  7a; 
χ2  =  8.4, df  =  1, p  «  0.01). In contrast, medium-sized Sceloporus 
species showed only weak evidence of assortment by size, instead 
occurring with small-, medium-, and large-bodied congeners in 
proportions roughly comparable to the number of species of each 
size class available in the genus as a whole (Figure 7b; χ 2 = 0.9, 
df  =  1, p  =  .63). More surprisingly, we found that large-bodied 
Sceloporus species often co-occur with other large Sceloporus spe-
cies, leading to a significant pattern of negative divergent sympa-
try (Figure 7c; χ2 = 6.2, df = 1, p =  .02). Our correlation analysis 
between the PGLS residuals of body size and our measure of di-
vergent sympatry confirmed that larger species show a pattern of 
negative divergent sympatry while smaller species show a pattern 
of positive divergent sympatry (Pearson's correlation: ρ = −0.41, 
df = 64, p = .0008).

At the level of bioregions, we also found evidence of divergent 
sympatry by small-bodied Sceloporus species and convergent sym-
patry of large-bodied Sceloporus species. Only Region 3 contained 
multiple species and was solely comprised of a single size class, while 
9 of the 15 regions with multiple species contained all three size cat-
egories. We found a disproportionately large number of large- and 
medium-bodied species and fewer small-bodied species in Regions 
10, 12, and 14. There were no regions with a disproportionately large 
number of small-bodied species.

Bioregion Number of species Biome description

Bioregion 1 6 (1S, 2M, 3L) Montane forest, arid desert, temperate steppe, 
and Mediterranean vegetation

Bioregion 2 2 (1S, 1M, 0L) Temperate broadleaf forest and temperate 
steppe

Bioregion 3 2 (2S, 0M, 0L) Subtropical rainforest

Bioregion 4 4 (0S, 1M, 3L) Arid desert and subtropical dry forest

Bioregion 5 1 (1S, 0M, 0L) Subtropical dry forest

Bioregion 6 3 (0S, 2M, 1L) Montane forests

Bioregion 7 3 (1S, 1M, 1L) Arid desert

Bioregion 8 5 (1S, 2M, 2L) Temperate broadleaf forest, semiarid desert, 
subtropical dry forest, temperate steppe and 
arid desert

Bioregion 9 12 (4S, 3M, 5L) Montane forest, arid desert, and semiarid desert

Bioregion 10 12 (1S, 6M, 5L) Montane forest, arid desert

Bioregion 11 27 (10S, 10M, 7L) Subtropical dry forest, montane forest, grass 
savanna, arid desert, and tropical rainforest

Bioregion 12 7 (0S, 4M, 3L) Subtropical dry forest

Bioregion 13 8 (2S, 3M, 3L) Subtropical dry forest

Bioregion 14 16 (3S, 5M, 8L) Montane forest and tropical rainforest

Bioregion 15 4 (2S, 0M, 2L) Subtropical dry forest

Bioregion 16 3 (1S, 1M, 1L) Montane forest and tropical rainforest

Note: In the number of species column, values in parentheses indicate how many species of each 
size category are found within each region where S = small, M = medium, and L = large. See 
Figure 1 for locations of each Bioregion. See Appendix S1 for more detailed descriptions using the 
ecoregion classifications of Olson, Dinerstein (Olson et al., 2001).

TA B L E  2   Biome overlap of each region 
identified by Infomap Bioregions (Edler 
et al., 2017) for Sceloporus lizards
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4  | DISCUSSION

Using public information from large open-source databases and 
phylogenetic information, we found several important insights 
into the geography of congeneric sympatry and phenotypic diver-
gence in Sceloporus lizards. First, closely related species tend to be 
in close geographic proximity (phylogenetic underdispersion) and 
share similar body sizes, suggesting that they have been evolving 
gradually. The large number of closely related, sympatric species 
in ecologically diverse regions, and the positive relationship be-
tween habitat heterogeneity and the number of species present in 
a bioregion suggest that most speciation occurred over short time 
frames and in near allopatry. One notable exception was the undu-
latus group, which is geographically widespread across the United 
States despite only minimal speciation. The undulatus clade seems 
to exemplify Rapoport's rule (Stevens, 1989) as the group is found 
at higher latitudes and species have exceptionally large ranges with 
only two widespread undulatus species occurring in the Southeast 
United States and two widespread undulates species occurring in the 

Midwest United States. The group seems to have migrated over large 
distances in a relatively short period of time (Rivera et al., 2020) with 
few speciation events occurring. Additionally, the group shows little 
phenotypic diversification (Leaché, 2009) with most species being 
medium in body size while only two species, S. woodi and S. virgatus, 
were small.

Second, we found that the ancestor of all Sceloporus was likely 
a medium-bodied species with small-bodied species evolving soon 
after. The fossil record indicates that the second oldest Sceloporus 
fossil had unicuspid teeth (Holman, 1987) and may have been the an-
cestor to S. merriami, a small species. Furthermore, large body sizes 
evolved more recently in the clade's history in a few lineages, where 
it was then retained over long periods of evolutionary time. Putting 
biogeography and morphological evolution together, we found ev-
idence for high functional diversity and geographic sorting across 
bioregions. The majority of bioregions had a nearly equal representa-
tion of body size categories with the exception of Regions 10 and 12 
where medium and large species were overrepresented. Species also 
seem to sort geographically so that small-bodied species co-occur 

F I G U R E  2   A map showing the recovered bioregions from the clustering analysis. Also shown is the phylogeny used in the analyses 
modified from Leaché, Banbury (Leaché et al., 2016). Next to the species is a pie chart indicating which bioregion each species belongs to 
and colors of the pie slices correspond to colors of the bioregions in the map
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F I G U R E  3   Most closely related Sceloporus species exist in relatively close proximity on a map, as in the lower, blue, formosus clade in 
this figure. In contrast, species in the undulatus clade (upper clade in red) are widely distributed across the southern United States. Dashed 
lines link the species name on a phylogeny to the geographic center of their range. Phylogenies were modified from Leaché, Banbury (Leaché 
et al., 2016). Biogeography of the other Sceloporus clades is presented in Figure S2
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more often with larger-bodied species, perhaps to reduce ecological 
competition or interference like in other lizard species (Losos, 1990; 
Moritz et  al.,  2018). In contrast, large-bodied Sceloporus species 
most often co-occur with other large-bodied species, perhaps re-
flecting phylogenetic constraints on body size evolution and limited 
dispersal. Future studies may want to investigate the relationship 
between species distributions, body size, and habitat at smaller spa-
tial scales and to explore functional diversity through more detailed 
analysis of phenotypes.

4.1 | Bioregions and sympatry

Sceloporus species are unevenly distributed across North America, 
with some geographically large regions, like the southern and 
western United States, having few species, whereas geographi-
cally smaller regions, like central Mexico and south Central 
America, have many species. This pattern seems to follow the 
latitudinal diversity gradient where biodiversity increases from 
poles to the tropics (Hillebrand, 2004) and Rapoport's rule where 
species at higher latitudes have lower rates of spatial turnover 
and larger ranges (Stevens,  1989). The undulatus clade exempli-
fies this as these nine northern species span the entire United 
States. Conversely, species assemblages at lower latitudes tend to 
have higher richness and turnover rates (Stevens, 1989). This also 
seems to be the case in Sceloporus as the small area from central 

Mexico to Panama harbors 65 species, over half of the total diver-
sity of the genus. Other factors may also contribute to the high 
species richness in relatively small bioregions. For example, the 
Trans-Mexican volcanic belt (Region 11), which formed during the 
Eocene and Miocene periods (Ferrari et  al., 2012), is a relatively 
small geographic region that includes several volcanic peaks that 
rise above 3,000 m, and the region is a biodiversity hotspot with a 
string of sky islands (Halffter & Morrone, 2017; Mastretta-Yanes 
et  al.,  2015). Likewise, Region 14 harbors 16 species, is close to 
the equator, and has a large mountain range named Cordillera de 
Talamanca that traverses Costa Rica and Panama. This high habi-
tat heterogeneity likely contributes to increased allopatry and 
speciation within these two regions. This was also supported by 
our correlation analysis showing that regions with more eleva-
tion heterogeneity have a higher species richness compared to 
regions with low elevation heterogeneity. This pattern may also 
be explained by the elevation diversity gradient where biodiver-
sity is highest at middle elevation (McCain, 2005), but this has yet 
to be explicitly tested. Additionally, the lower turnover rates in 
areas close to the equator may because Central American is vastly 
smaller in area compared to North America so species tend have 
smaller ranges.

Early research suggested that the genus Sceloporus originated 
in Mexico given the diversity seen today (Hall,  1973). More re-
cent studies, however, found that Sceloporus most likely originated 
much further north in what is now the northern United States and 

F I G U R E  4   Maps depicting the geographic center for a species’ range separated by clade. Dashed lines are used to link the 
species with their respective range center. Panel (a) represents the (angustus + siniferus + variabilis) clades, panel (b) represents the 
(merriami + pyrocephalus + gadoviae + jalapae) clades, panel (c) represents the (graciosus + magister + scalaris) clades, panel (d) represents 
the (undulatus + S. edwardtaylori) clade, panel (e) represents the (spinosus + formosus) clades, panel (f) represents the (clarkii + grammicus) 
clades, and panel (g) represents the (megalepidurus + torquatus + poinsettii) clades

Observed MPD 
community

Mean MPD in null 
community

Standardized 
effect size

p-value 
quantile

Bioregion 1 53.17 49.27 1.24 0.92

Bioregion 2 56.15 49.03 0.72 0.71

Bioregion 3 11.28 50.97 −3.06 0.01

Bioregion 4 44.81 48.84 −2.02 0.05

bioregion 5 54.56 49.81 0.7 0.75

Bioregion 6 49.12 49.24 −0.02 0.45

Bioregion 7 45.01 49.33 −0.63 0.28

bioregion 8 38.32 48.56 −1.94 0.04

Bioregion 9 59.12 50.62 0.68 0.64

Bioregion 10 27.34 48.34 −2.37 0.01

Bioregion 11 22.16 47.72 −2.47 0.01

Bioregion 12 41.29 48.6 −1.96 0.03

Bioregion 13 47.53 49.62 −0.45 0.27

Bioregion 14 36 48.29 −1.96 0.05

Bioregion 15 60.55 51.18 0.94 0.82

Bioregion 16 35.26 49.05 −1.76 0.05

TA B L E  3   Results from the mean 
pairwise distance (MPD) community 
structure analysis. We used the 
standardized effect size and p-value 
quantiles to evaluate the results
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Canada (Lawing et al., 2016). Based on fossil evidence and paleocli-
mate reconstructions, Mexico was too hot and dry and, therefore, 
unsuitable for the genus until about 6 million years ago (Lawing 
et al., 2016). We note that Lawing, Polly (Lawing et al., 2016) es-
timated the limits of the realized niche using the abiotic BIOCLIM 
variables and did not include other abiotic or biotic factors that 
are also driving the evolution of ranges in the lineage. When the 
global climate cooled later in the Miocene, speciation rates within 
the genus Sceloporus increased (Leaché et  al.,  2016), which co-
incides with Sceloporus entering central Mexico. Rapid diversifi-
cation may have been mediated by topographical complexity as 
land uplift in the volcanic belt began some 20 MYA and contin-
ues today (Dimmitt et al., 2015). The complex topography of the 
Trans-Mexican volcanic belt would have allowed novel and dispa-
rate niches to emerge which Sceloporus could have exploited. This 
would have led to a rapid diversification and build-up of endemic 
species assemblages seen today.

In addition to Rapoport's rule, the lack of diversity at higher 
latitudes may reflect historical events like glacial maxima and 
shifts in climate regime. If taxa were unable to find refuges from 
increasing glacier event, species would fail to recolonize and be 
extirpated (Grubb et al., 1987) leaving only lineages farther south. 
Second, the emergence of new unsuitable habitat may also con-
tribute to this pattern. Sceloporus lizards may have been extir-
pated in Canada and parts of the United States due to the rise 

of the Rocky Mountains, which blocked moisture from the mid-
continent (Dimmitt et al., 2015). This allowed the Great Plains of 
North America to emerge but also created more xeric conditions 
(Dimmitt et al., 2015) that may have excluded Sceloporus from this 
newly formed habitat. The undulatus clade may be a secondary 
rerecolonization of Sceloporus to more northern regions that were 
previously uninhabitable due to shifts in climate regime or glaciers. 
Speciation in this group would have occurred more gradually as 
the clade spread across the United States. Whether glacial events, 
shifts in climate regime, or geological activity contribute to the 
biogeographic pattern of Sceloporus is unknown; however, these 
would explain the lack of richness in northern North America. 
Additionally, lizards are generally poor dispersers (Escobedo-
Galván et al., 2011) and take long periods of evolutionary time to 
occupy new geographic ranges. Thus, large-bodied Sceloporus spe-
cies may cluster geographically in present time because they are 
recently evolved and have had less time to disperse. It may also 
be the case that because larger species have larger home ranges 
and are therefore more likely to overlap, however this has yet to 
be studied. Alternatively, large-bodied lizards may differ in niche 
breadth compared to their smaller congeners reducing the poten-
tial habitats they can use and restricting large-bodied lizards to 
particular areas. We have some evidence for this pattern as large-
bodied lizards can be found in montane, subtropical and tropical 
forests or arid deserts, but this has yet to be studied.

F I G U R E  5   Distribution of body sizes (adult male Snout-to-Vent Length) for 69 Sceloporus species. We used the natural breakpoints, 
vertical red lines, in the histogram to bin species into three size classes
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4.2 | Body size and trait divergence

In general, Sceloporus do not show the same pattern of morphological 
and ecological specialization as other closely related clades (Warheit 
et al., 1999). By taking our approach, we can begin to identify large-
scale patterns of diversification that are normally difficult to obtain. 
For example, resource availability may drive small species to be geo-
graphically spread to reduce competition. Conversely, large species 
are often found with other large species and alternative reproductive 

and foraging strategies may facilitate co-occurrence. This seems to be 
the case for two large species, S. torquatus and S. spinosus, which are 
often found in sympatry. Interestingly, their peak mating seasons are 
separated by several months (Feria-Ortiz et al., 2001; Valdéz-González 
& Ramírez-Bautista, 2002). S. spinosus is oviparous, has peak mating 
activity in April and May, and eats insects and other invertebrates 
(Valdéz-González & Ramírez-Bautista,  2002). S.  torquatus, on the 
other hand, is viviparous, mates in the fall (Feria-Ortiz et al., 2001) and 
is omnivorous, increases intake of plant material during the summer, 

F I G U R E  6   Ancestral reconstruction of Sceloporus and outgroups body size using a Brownian motion model of evolution. Warm colors 
represent species with small body sizes, while cooler colors represent large-bodied species. Phylogeny pruned from Leaché, Banbury 
(Leaché et al., 2016)
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but mainly feeds on insects and other arthropods in early and late sea-
son (Búrquez et al., 1986). Sceloporus species tend to increase their ac-
tivity, including foraging, during the peak mating season, and, at least 
in males, reducing activity during nonbreeding seasons (Rose, 1981). 
By employing strategies like off-setting breeding seasons or modifica-
tion of diet and activity through the year, species may be able to live 
in sympatry with reduced antagonistic interactions.

A limitation in our study was the lack of intraspecific variation 
in the body size data. Phenotypic variation has long been known to 
be an important measure that can affect the response to selective 
pressures, how species interacts with abiotic and biotic factors, 
and even community dynamics (Bolnick et  al.,  2003). Thus, ignor-
ing intraspecific variation may overlook fundamental processes that 
dictate species assemblages and the ecological breadth of a species 
(Violle et al., 2012). The lack of intraspecific size data can become 
an issue for species with large distributions, like S.  grammicus and 
S. variablis, because populations are bound to differ in body size and 

sampling effort may not be even across the range. This may have 
led to incorrect classification of the size, small versus medium, for 
example, which would affect our chi-squared analysis, ancestral re-
construction, and understanding of how species’ phenotypes are 
distributed. This can be overcome by measuring a large number of 
individuals and equal sampling efforts across the range of the spe-
cies. In our case, S. grammicus and S. variabilis both had large sample 
sizes, 412 and 457 individuals, respectively, but some species, like 
S. zosteromus may be more vulnerable to bias.

4.3 | A different approach to studying 
diversification

As large data sets become more accessible through open-source 
databases, we can begin to address questions at a larger scale. For 
example, GBIF is thought to be a good estimate for species richness 

F I G U R E  7   Measures of divergent sympatry for each Sceloporus species. (a) Most small-bodied Sceloporus species have divergent 
sympatry, co-occurring more often with larger congeners. (b) We found no evidence of size assortment by medium-bodied Sceloporus 
species. (c) Large-bodied Sceloporus species show some convergent sympatry, often co-occurring with similarly sized Sceloporus species
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completeness in both the United States (~75%–80%) and Mexico 
(~60%) (Meyer et al., 2015) allowing researchers to address questions 
about all of North America, rather than a small area. Additionally, 
much of the data that populates large databases come from repu-
table sources like museums. For example, between 70% and 80% of 
occurrence data for the clade Reptilia comes from museums vouch-
ers and are accurate in terms of species identification and locality.

Although little work has been done describing bioregions in 
terms of ectotherms in North America, a study by Burbrink and 
Gehara (Burbrink & Gehara, 2018) found that the clade Lampropeltis, 
New World kingsnakes, showed a similar composition of bioregions 
as found in our study. For example, we found distinct bioregions in 
the west coast, east coast, central, and southwest United States 
and this same pattern was found by Burbrink and Gehara (Burbrink 
& Gehara,  2018); however, the size of the bioregions slightly dif-
fered. Bioregions differed dramatically in Mexico and across 
Central America. We found ~ 10 bioregions across southern North 
America and Central America, while Burbrink and Gehara (Burbrink 
& Gehara, 2018) only found two. This difference in the number of 
bioregions is likely explained by the disparity in diversity between 
Sceloporus and Lampropeltis. There are ~ 25 species of Lampropeltis 
across the Americas, while Sceloporus has ~ 100 species with a ma-
jority of the diversity centered in Mexico. The great diversity of 
Sceloporus coupled with high endemism may also explain the fine 
partitioning of bioregions found in Mexico compared to the two large 
regions found by Burbrink and Gehara (Burbrink & Gehara, 2018).

Many insular examples exist of closely related species occu-
pying a single geographic region and exhibiting the phenotypic 
consequences that arise from such sympatry (Lack,  1947; Losos 
et al., 1998; Seehausen, 2006). These examples have led to ground-
breaking work in evolutionary biology and pushed the field forward, 
yet they may represent the exception rather than the rule. Here, we 
emphasize and promote the use of open-source databases to per-
form macroscale analyses across large geographic areas that were 
previously difficult to achieve. Additionally, large-scale analyses 
provide a novel view into continental systems to gain new insights 
on macroevolutionary processes that create large-scale patterns of 
diversity.
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