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Abstract.—Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than
on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order
to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate,
balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch
length, nonultrametric randombranch length). Comparisons betweenhypothesized alignments and true alignments enabled
determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general,
our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced
for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes,
alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many
analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover
very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and
maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of
the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major
factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on
topological reconstruction. [Bayesian; maximum likelihood; maximum parsimony; multiple sequence alignment; neighbor
joining; phylogenetics; simulation; tree reconstruction.]

Multiple-sequence alignment is an important tool in
biological research and may be used for a variety of pur-
poses ranging from secondary structure identification
(Coventry et al., 2004; Dowell and Eddy, 2004; Holmes,
2005a; Knudsen and Hein, 1999), noncoding functional
RNA (ncRNA) detection (di Bernardo et al., 2003; Rivas
and Eddy, 2001), and phylogenetic inference. Although
the overall goal of phylogenetic analysis is to most accu-
rately infer the relationships of the terminal taxa given
the data, little attention has been given to the role that
alignment error may play in tree reconstruction. It has
been concluded that the resulting phylogeny may be
more dependent upon the methods of alignment than on
the mode of phylogenetic reconstruction (Cammarano
et al., 1999; Hwang et al., 1998; Kjer, 1995, 2004; Lake,
1991; Morrison and Ellis, 1997; Mugridge et al., 2000;
Ogden and Whiting, 2003; Thorne and Kishino, 1992;
Titus and Frost, 1996; Xia et al., 2003). Given the pre-
sumed importance of accuracy of multiple-sequence
alignments, it is surprising that very few studies have
specifically addressed this issue. As Hall (2005) writes,
“It is a truism that the quality of a tree is no better than
the quality of the alignment used to estimate that tree.”

In order to determine the accuracy of an estimate or
hypothesis, one must know the truth. Numerous studies
have used simulated fixed data sets (usually with no in-
sertions or deletions) to examine topological accuracy of
phylogenetic reconstruction methods (e.g., Hillis, 1995;
Huelsenbeck and Rannala, 2004; Nei, 1996; Rosenberg
and Kumar, 2003; Takahashi and Nei, 2000, just to name
a few). The typical modus operandi in simulation stud-
ies is to generate a fixed alignment created from the
true tree. Then, different tree-buildingmethodologies are
used to reconstruct hypothesized trees, and finally, these
are compared to the true tree to evaluate topological ac-
curacy. Although this process may enable the compar-

ison of different tree-building methods and models, it
says nothing about the effect that alignment error may
contribute.Hall (2005) overcomes someof these deficien-
cies by introducing insertion and deletion events into
simulated alignments in order tomake thedata setsmore
biologically realistic. Nevertheless, his analysis does not
take advantage of a comparison between the true align-
ments and the hypothesized alignments. Furthermore,
all of the true trees he used during simulation were
“strictly bifurcating, cladistically symmetric” trees (Hall,
2005); pectinate tree shapes and their effects and interac-
tions with alignment were not examined. Recent stud-
ies (Keightley and Johnson, 2004; Pollard et al., 2004)
have simulated alignments with insertions and dele-
tions in order to compare and benchmark different align-
ment methods and approaches, yet none of these studies
has examined phylogenetic accuracy. In a similar study
(Rosenberg, 2005a), the relationshipofpairwise sequence
alignment and evolutionary distance was investigated.
It was shown that “when sequence identity exceeded
80%, essentially all aligned sites (>99%) were truly ho-
mologous . . . [and] As identity declined, the proportion
of correctly aligned sites rapidly decreased.” Notwith-
standing these latest contributions, the question of how
various phylogenetic methods respond to alignment er-
ror remains open.

Multiple sequence alignment is a procedure to con-
vert sequences of unequal length into sequences of equal
length by inferring the placement of gaps, with the goal
to infer homology among characters (note, however, that
sequences of equal length may also require alignment).
Insertion and deletion events (indels) are treated in a va-
riety of ways during multiple-sequence alignment and
phylogenetic reconstruction. When sequences require
alignment, the investigator is obligated to decide how he
or she accounts for insertions, deletions, and mutations.
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The question then of which A’s, T’s, C’s, G’s, and in-
dels to compare becomes fundamental in DNA system-
atic analysis (Wheeler, 2001). Indels may be treated as
an additional residue (gap characters) in a substitution
matrix. Treating gaps as an extra character in a substi-
tution matrix is essentially equivalent to explicitly or
implicitly assuming a linear gap cost model, although
more complicated weighting schemes allow for differ-
ent gap initiation and gap extension costs. Alternatively,
probabilistic evolutionary models for insertion and dele-
tions may be used, such as HMMs or SCFGs (Metzler,
2003; Miklos et al., 2004; Thorne et al., 1991, 1992) or gaps
may be treated using Felsenstein wildcards (Holmes and
Bruno, 2001). Although the underlying mechanisms and
frequencies of indels is not understood as well as base
substitutions processes (Hall, 2005), efforts to remedy
this lack of models and method are underway (Holmes,
2003, 2004, 2005b;Holmes andBruno, 2001;Knudsenand
Miyamoto, 2003;Mitchison andDurbin, 1995;Mitchison,
1999). We recognize that new methods that combine the
alignment and tree reconstruction processes have been
suggested (Fleissner et al., 2005; Lunter et al., 2005; Re-
delings and Suchard, 2005; Wheeler, 2001), but this study
will not address these ideas.

Independent of themeans bywhichmultiple sequence
alignments are generated, they are in their simplest form
statements of putative homology or “primary homol-
ogy” (de Pinna, 1991; Phillips et al., 2000). Only after
subjecting these primary homologies to a test (the re-
constructed topology), secondary homologies, or what is
usually termed homologous characters, may be inferred.
Thus, homologous features can be identified when their
origins are traced to a transformation on a branch lead-
ing to the most recent common ancestor (Ogden et al.,
2005). Character transformation ratios (base substitu-
tions and indels) are generally not directly measurable
and can only be inferred or estimated from predeter-
mined phylogenetic patterns. This produces a problem
in phylogenetic analysis: that the “interaction between
the specification of values a priori and their inference a
posteriori” is circular in nature (Wheeler, 1995), accentu-
ating the need for a better understanding of the effects
that alignment inaccuracies may contribute to topologi-
cal reconstruction.

The objectives of this study are: (1) simulate non-
coding DNA alignments with indels and compare true
alignments to hypothesized alignments through the cal-
culation of alignment accuracy scores; (2) examine the re-
lationship between alignment accuracy and topological
accuracy under different methods of tree reconstruction
(neighbor joining, parsimony, likelihood, and Bayesian);
and (3) investigate the interaction of alignment accuracy
with tree shape (length and branching pattern).

MATERIAL AND METHODS

Data Simulation

We simulated data sets for seven 16-taxon topologies
under a variety of different conditions in order to cover a
reasonable amount of the error space representing align-

ment inaccuracy. We believe that 16 terminals are suf-
ficient to provide reasonable tree shape diversity and
complexity in order to investigate the effects of align-
ment inaccuracies and tree reconstruction, while at the
same time not requiring enormous amounts of computa-
tional time to perform reasonable searches under differ-
ent reconstruction methods (particularly likelihood and
Bayesian).The seven topologies (Fig. 1) consistedof abal-
anced tree, a pectinate tree, and five random trees (A to
E) generated under a Yule model in Mesquite (Maddison
and Maddison, 2004). The relative branch lengths of each
topology were set under 11 different conditions: ultra-
metric equal branch length, ultrametric random branch
length (five sets), and nonultrametric random branch
lengths (five sets). Each of these 11 conditions was scaled
such that the maximum evolutionary distance between
a pair of sequences was equal to 1.0 or 2.0. Thus, each of
the seven topologies was used to create 22 model trees
(Fig. 2). All simulations were conducted under identi-
cal conditions using MySSP (Rosenberg, 2005c). The ini-
tial sequence length was 2000 base pairs. For this study,
manypotentiallyvariableparameterswereheld constant
in order to gain simplicity. Thus, aside from the different
conditions explained above, DNA evolution was sim-
ulated under the Hasegawa-Kishino-Yano (HKY) model
(Hasegawa et al., 1985),with transition-transversion bias
κ = 3.6 (Rosenberg and Kumar, 2003) and initial and ex-
pected base frequencies of A and T = 0.2; and G and C=
0.3.

Insertion and deletion events were modeled as a
Poisson process, following Rosenberg (2005a). Expected
numbers of insertions and deletions (modeled sepa-
rately) for a given branch were determined as a function
of the realized number of substitutions (itself a Poisson
process) that occurred on that branch. Expected rates
were based on observed values from primates and ro-
dents, with one insertion event for every 100 substitu-
tions and one deletion event for every 40 substitutions
(Ophir and Graur, 1997). The realized number of inser-
tion and deletion events was drawn from a Poisson dis-
tribution with mean equal to the expectation. The actual
size of each insertion and deletion event was indepen-
dently determined from a truncated (so as not to include
zero) Poisson distribution with mean equal to four bases
(as observed in primates and rodents) (Ophir and Graur,
1997; Sundstrom et al., 2003).

Each simulation was replicated 100 times. The fate of
every insertion and deletion event was tracked through-
out the simulations, such that the columns, including
those with gaps in the final alignment, represented the
true homologies (Rosenberg, 2005a).

Alignment

These simulations resulted in 15,400 unique data sets
(alignments) containing gaps representing either inser-
tion or deletion events during the simulation process,
and will be referred to as the True Alignments (TA).
Each of the TA were then stripped of their gaps and
were realigned via ClustalW version 1.83 (Thompson
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FIGURE 1. The seven topologies used to explore the effect of tree shape on alignment accuracy and tree reconstruction consisted of a balanced
tree, a pectinate tree, and five random Yule trees (A–E).

FIGURE 2. An example of the 22 model trees for the balanced tree shape, consisting of ultrametric equal branch length, ultrametric random
branch length (five sets), and nonultrametric random branch lengths (five sets). Each of these 11 conditions was scaled such that the maximum
evolutionary distance between a pair of sequences was equal to 1.0 or 2.0.
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FIGURE 3. The pairwise comparisons (given the example six-taxon tree) that would be used to calculate the TAA and BAA values.

et al., 1994) using default parameters. We will refer to
these alignments as the Hypothesized Alignments (HA).
Although one could examine the resulting topological
effects of varying parameters in ClustalW (Ogden and
Whiting, 2003), the focus of this study was not to try to
estimate the optimal parameter settings that would gen-
erate an alignment and the most accurate reconstructed
topology.Rather,wewanted toproduce a reasonable and
realistic amount of alignment error across the alignment
inaccuracy space.

Alignment Accuracy

Alignment accuracy, calculated as the proportion of
pairwise ungapped aligned sites that are truly homolo-
gous (Rosenberg, 2005a), was summarized by two differ-
ent measures: (1) the Total Alignment Accuracy (TAA)
score and (2) the Branch Alignment Accuracy (BAA)
score. The TAA for a data set was calculated from the
average accuracy of all pairwise sequence comparisons
in the multiple alignment. For example, given a tree with
six sequences denoted as A, B, C, D, E, and F, all pos-
sible pairwise comparisons would be averaged to cal-
culate TAA (Fig. 3). Similarly, the BAA was calculated
from the average of all pairwise comparisons that cross
aparticular branch. For example, the set of pairwise com-
parisons that would be averaged to calculate BAA for the
branch separating A + B from the remaining taxa (indi-
cated by the arrow) would be: AC, AD, AE, AF, BC, BD,
BE, and BF (Fig. 3). It is important to realize that only the
aligned sites in the pairwise comparisons are examined;
any site consisting of a nucleotide that is aligned with a
gap, or a gap with a gap, is not included in the pairwise
score.

Tree Reconstruction Analyses

Each of the data sets (15,400 TA and 15,400 HA)
were analyzed under the four most widely used strate-
gies for phylogenetic tree reconstruction: neighbor join-

ing (NJ), maximum parsimony (MP), maximum likeli-
hood (ML), and Bayesian (B) using PAUP∗ version 4.b10
Windows (Swofford, 2002) and MrBayes version 3.0b4
(Huelsenbeck and Ronquist, 2001). We were interested
in looking at the effects of alignment error on reconstruc-
tion accuracy by comparing the TA tree reconstructions
to the HA tree reconstructions. Thus, it is not the purpose
of this study to try to optimize any specific parameters
during the tree reconstruction phase. The crucial point
is that both the TA and HA be analyzed identically un-
der the different tree-building methods, allowing for di-
rect comparisons. Analyses performed under NJ, ML,
and B were implemented under the HKY model and
other default settings. For the likelihood analyses, transi-
tion/transversion ratios were estimated, nucleotide fre-
quencies were assumed from empirical frequencies, and
distribution of rates at variable sites was set to equal.
In MP, the analyses carried out consisted of 100 random
additions with TBR swapping and all other default set-
tings. When multiple trees were recovered using MP or
(rarely) ML, the strict consensus of these trees was used
as the result. For theB analyses, 100,000 generationswere
performed sampling every 100 generations, and the first
250 trees were then discarded as the burn-in. A majority-
rule consensus topology of the remaining 750 trees was
constructed (nodes that were present in at least 50% of
the topologies were retained) and saved as the resultant
topology for each B analysis. In summary, each of the
15,400 TA and the 15,400 HA were analyzed identically
for each of the tree building methodologies and the re-
sulting topologies (consensus in some cases) were used
to compare the TAA and BAA measures to topological
accuracy.

Each reconstructed tree was compared to the true
model tree using the Robinson-Foulds (1981) mea-
sure to estimate topological accuracy; these are refer-
enced as TAdist and HAdist, respectively, for the TA
and HA data sets. The difference between these values
(HAdist − TAdist) therefore represents the difference in
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TABLE 1. Mean, median, maximum, and minimum TAA values for each of the different tree shapes.

Balanced Pectinate Random A Random B Random C Random D Random E

Mean 0.720 0.781 0.726 0.716 0.761 0.727 0.722
Maximum 0.966 0.978 0.976 0.965 0.960 0.973 0.965
Minimum 0.191 0.365 0.173 0.182 0.330 0.229 0.217
Median 0.815 0.844 0.818 0.809 0.816 0.800 0.801

topological accuracy of trees reconstructed from the true
and hypothesized alignments; this value is referred to as
the Tree Distance Difference (TDD). When the TA tree
is topologically more accurate than the HA tree, TDD
will be a positive number; if TDD is negative, the HA
tree is more accurate that the TA tree. Note that TDD is
not itself a measure of topological accuracy, but rather a
comparison of the accuracies of the TA tree and HA tree
reconstructions. Hence, TA and HA trees could both be
completely accurate, with a distance to the true tree of
0, and thus, a TDD equal to 0. Alternatively, they could
both be equally inaccurate, with large distances relative
to the true tree, and again TDD may also be 0 (the re-
constructed trees could be completely different, but also
completely wrong).

RESULTS

Results from the numerous analyses can be looked at
in many different ways. In order to simplify, we have
broken down the main results to the two methods of
calculating alignment accuracy.

TAA (Total Alignment Accuracy)

TAA values (Table 1) ranged from a minimum of 0.173
to a maximum of 0.978, with a mean of 0.736 across all
shapes. The pectinate tree (0.781) and random C tree
(0.761) had higher TAA means (although not medians)
than the remainingmore balanced topologies. This result
at first seems misleading, because one would expect bal-
anced trees to produce more accurate alignments than
pectinate trees. However, we know that alignment ac-
curacy is largely dependent on the distances among se-
quences (Rosenberg, 2005a) and the pectinate trees in
this study have fewer long-distance pairs (pairs that
cross the root) and more short-distance pairs than bal-
anced trees due to the manner by which the trees were
scaled to similar maximum depth. Because the mean
pairwise distance among taxa is smaller for the pecti-
nate trees than the balanced trees, the accuracy of all
possible pairwise alignments is greater in the pectinate
case. It should be noted that the accuracies of the most
distant pairs in pectinate trees is less than that of bal-
anced trees because balanced trees lead to more accu-
rate alignments of distant sequences (Rosenberg, 2005b);
this emphasizes the contrast between examining spe-
cific pairs of sequences and entire data sets. The differ-
ence in mean TAA between alignments simulated un-
der a max distance of 1 and 2 is 0.370. In other words,
the doubling of the evolutionary distance caused an ab-
solute average decrease in alignment accuracy of 37%
(a relative decrease in accuracy of 29%). These results

clearly indicate that the simulations produced alignment
error across the reasonable large majority of the real-
istic alignment space (detailed results are found in the
online appendix, Table A1, at http://systematicbiology.
org).

In order to evaluate possible trends and relationships,
the results from the TAA calculations were graphed in-
dividually for each tree shape and across the different
methods. When looking at each of the tree shapes, all
22 conditions (2 ultrametric equal branch length, 10 ul-
trametric random branch length, and 10 nonultrametric
random branch length) were pooled (unpooled results
are provided in the online appendix).

General trends in topological accuracy of the true
and hypothesized alignments appear to be very similar
at first glance (online appendix, Figs. A1 and A2). In
general, pectinate trees were much more difficult to
reconstruct than balanced trees, regardless of alignment
accuracy. Directly comparing these topological accuracy
plots for TA and HA can be difficult; we therefore
concentrate most of our discussion on Tree Distance
Difference (TDD). The relationship between TDD and
TAA for the balanced tree simulations is shown in
Figure 4. Points that are to the right have very accurate
alignments and become less accurate as they move left,
and points that are above the y-axis zero line are cases
where the TA tree reconstructions were more accurate
than the HA tree reconstructions.

It should be noted that, for any given accuracy, there
are many points that fall on the zero line or above and
below in a vertical spread over many parts of the graph.
Points with negative TAA indicate replicates for which
the HA led to more accurate tree reconstruction than the
TA. Thus, the symmetric spread of points above and be-
low TAA of zero indicates stochastic variation in tree re-
construction due to alignment difference. It should also
be recognized that many points are superimposed upon
one another. In order to summarize the average distribu-
tion of the points and to discern if any relationship exists
between TAA and TDD, a moving average (based on an
overlapping sliding window of 50 consecutive points) is
shown on the graph.

Figure 4 shows the results of each tree reconstruc-
tion method for the balanced tree shape. As mentioned
above, many of the points are superimposed; however,
one can see that for the more accurate alignments there
is a balanced spread of data points above and below the
zero-TDD line (except for the neighbor-joining cases);
as alignments become less accurate (moving left), the
spread increases with an upward trend towards a higher
TDD value. The moving average lines were nearly flat
and essentially followed the zero-TDD line down to
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about 55% alignment accuracy (moving from right to
left) for all methods except NJ, which begins to rise at
about 60% accuracy. TAA values for all methods below
55% show an increase in TDD, indicating that the TA
tree reconstructions were more accurate than the HA tree
reconstructions.

In contrast to the balanced tree shape, the pectinate
tree shape (Fig. 5) resulted in an immediate increasing
trend in TDD as alignment accuracy decreased. An ini-
tial peak is reached by MP, ML, and Baysian methods at
about 85% alignment accuracy and then a small decline
is seen until about 70% alignment accuracy. NJ presents
an initial peak at about 78% accurate and then a similar
increase is seen until about 70% alignment accuracy as
well. Maximum parsimony appears to be less suscepti-
ble to large TDD values across the alignment error space
than the other methods. This does not necessarily mean
that MP reconstructs trees more accurately, only that the
effect of less accurate alignments is not as great for MP
as it is for ML and Bayesian. In fact, ML and Bayesian
outperform MP using the TA data sets (see method com-
parison below) and therefore these methods have more
to lose as alignments become less accurate. Moreover, NJ
is more sensitive to alignment error, as seen by an initial
increase in TDD with decreasing TAA, and also seems
to be more affected by very inaccurate alignments (less
that 50% accurate) than the other methods. Therefore,
although pectinate trees, on average, contain less align-
ment error thanmorebalanced topologies (Table 1), these
errors have a larger effect on tree reconstruction then the
same amount of error in a balanced tree.

In order to examine the random tree shapes and com-
pare them to the balanced and pectinate shapes, we plot
the moving average lines separated by method for each
tree shape (Fig. 6). Because the same general trends are
seen with respect to data point spread, we only show
the moving average lines for these graphs. The random
tree shape simulations follow the same general curve as
the balanced tree, with the obvious exception of the ran-
dom C tree (Fig. 1). This tree has a much more pectinate
shape than the other random trees and therefore it is not
surprising that its trend falls in between thepectinate tree
and the remaining more balanced tree shapes. MP, ML,
and B methods support this same basic result; the more
pectinate-like a tree is, the larger the effect of alignment
error on topological accuracy, particularly for alignments
over 60% accurate. NJ, on the other hand, is slightly more
sensitive to alignment error for all tree shapes relative to
the other methods.

BAA (Branch Alignment Accuracy)

In order to examine the effect of BAA on topological
reconstruction, we counted how many times the correct
branch was identified in each of the 100 simulation repli-
cates. We calculated the difference in the number of repli-
cates that recovered the branch between TA and HA tree
reconstructions (TArep − HArep). This number is gener-
ally positive; however, there are also a number of cases
where the HA tree recovered a branch more often than

the TA tree. Figure 7 depicts the resulting data points
and moving averages for all of the different tree shapes
and conditions pooled together, separated by the four
methods of tree reconstruction. This graph represents an
average across all trees. Except for a small jump around
87%, the TA and the HA data sets show little difference in
branch reconstruction accuracy. Below about 70% align-
ment accuracy, a general trend of increase is seen in all
the methods, with ML and B maximums of over 20 repli-
cate differences at a BAA score of around 34%. However,
similarly as above, MP appears to be less affected, as
measured by the (TArep − HArep) value, for BAA values
between 30% and 60%.

DISCUSSION

Our results confirm many ideas concerning the af-
fect of alignment accuracy on topological accuracy (Hall,
2005; Lake, 1991; Morrison and Ellis, 1997; Ogden and
Whiting, 2003; Thorne and Kishino, 1992). For example,
we find that alignment accuracy can have a profound ef-
fect on any one single data set. This is evidenced by the
fact that many data points are found above and below
they-axis zero lines for identical or nearly identical align-
ment accuracy scores (Figs. 4 and 7). Therefore, any hy-
pothesized alignment (whether correct homologies were
recovered or not) may give you a topology that is very
accurate, very inaccurate, or something in between. It is
difficult to predict this on a case by case basis, but this
study does confirm that the alignment can drive the re-
sultant accuracy.

However, there are also many cases where one is no
better or worse off with an inaccurate alignment. This
does not mean that one is necessarily reconstructing the
topology correctly, only that any hypothesized align-
ment may perform about the same as the true alignment.
It also does not mean the true and hypothesized align-
ments are reconstructing the same trees. They could each
get half of the branches wrong, but not the same half.
This is apparent from our results because many data
points fall essentially on the y-axis zero lines (Figs. 4
to 7). These results are not surprising because there are
tree shapes and data sets that are inherently hard to re-
construct, and any hypothesized alignment may recon-
struct the topology as accurately (or as inaccurately) as
the unknown (for empirical data) true alignment. So al-
though we know that alignment may have a huge down-
stream effect on topological accuracy, we also know that
in somecases inaccurate alignmentsmayhave (on theav-
erage) no reasonable noticeable negative effect on tree re-
construction (stochastically, some inaccurate alignments
produce better trees than the correct alignment). Thus,
Hall’s (2005) “truism” may be true in some cases, but
there are also certainly cases where the quality of the
tree is essentially independent from the quality of the
alignment.

Despite the intricacies of the behavior of any one
particular data set, we confirm that, in general, more
accurate alignments give you more accurate topolo-
gies. This is demonstrated through the moving average
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FIGURE 4. Relationship of Total Alignment Accuracy (TAA) and Tree Distance Difference (TDD) for balanced tree shape (all 22 model
conditions pooled). Points to the far right are the most accurate alignments, whereas points to the left are the least accurate alignments. Points
above the 0 TDD line are cases where the TA reconstructed tree was more accurate than the HA reconstructed tree, and the opposite is true for
points below the 0 TDD line. Many points may be superimposed upon one another. The lines are moving averages based on an overlapping
sliding window of 50 consecutive points. Note that the likelihood moving average line is essentially coincident and hidden by the Bayes line.

FIGURE 5. Relationship of Total Alignment Accuracy (TAA) and Tree Distance Difference (TDD) for pectinate tree shape (all 22 model
conditions pooled). Points to the far right are the most accurate alignments, whereas points to the left are the least accurate alignments. Points
above the 0 TDD line are cases where the TA reconstructed tree was more accurate than the HA reconstructed tree, and the opposite is true for
points below the 0 TDD line. Many points may be superimposed upon one another. The lines are moving averages based on an overlapping
sliding window of 50 consecutive points.
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FIGURE 6. Moving average lines showing the relationship of Total Alignment Accuracy (TAA) and Tree Distance Difference (TDD) separated
by the four methods of tree reconstruction and tree shape.

lines. Across more “realistic topologies” (i.e., not fully
balanced or fully pectinate), as alignment error in-
creases the TA reconstructions outperform the HA re-
constructions. Although this notion is based on an
average across all of the analyses performed (or sub-
sets of the analyses), it can still be adhered to as a
good rule of thumb. This result is not particularly sur-
prising and is logically attractive; however, until this
study this obvious assumption had never been formally
tested.

Our results strongly demonstrated that balanced
topologies are much less affected by alignment error
than pectinate topologies. This trend is not surprising
as balanced tree branch lengths tend not to be as long or
short aspectinate tree branch lengths for trees of identical
depth. These factors and maybe others not fully under-
stood may elucidate questions as to why balanced tree
shapes seem to be just easier to reconstruct than pecti-

nate ones. As an aside, it has been suggested that certain
methodologies or data sets are biased toward produc-
ing more pectinate trees (Colless, 1996; Harcourt-Brown
et al., 2001; Heard and Mooers, 1996; Huelsenbeck and
Kirkpatrick, 1996; Mooers et al., 1995), yet arguments ex-
ist against this idea as well (Farris and Kallersjo, 1998;
Wenzel and Siddall, 1999), and future studies are needed
to further investigate the role of methodological biases in
alignment and tree reconstruction. Nevertheless, the de-
gree towhich thebalanced treeswere robust to alignment
inaccuracy was unexpected. Essentially, alignments that
were 50% inaccurate showed no average disadvantage
as compared to the true alignments. It also calls to ques-
tion an aspect of Hall’s (2005) recent study; although he
simulated sequences in an extremely realistic fashion, in-
cluding indels and alignment, he only used strictly bal-
anced tree topologies, which likely mitigated much of
the effect of alignment on his results. For many cases, it
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FIGURE 7. Relationship of Branch Alignment Accuracy (BAA) and number of replicates difference. Points to the far right are the most accurate
alignments by branch, whereas points to the left are the least accurate alignments by branch. Points above the 0 line are cases where the TA
reconstructed tree recovered the particular branch in more replicates than the HA reconstructed tree, and the opposite is true for points below
the line. Many points may be superimposed upon one another. The lines are moving averages based on an overlapping sliding window of 50
consecutive points.

might not matter if your alignment is poor, and any of
the available alignment programs may “do the job” well
enough. However, it should cautiously be remembered
that this conclusion is basedon the average ofmany anal-
yses, and for any one analysis it could matter a great
deal. This is particularly applicable if one is interested in
a specific relationship where branches are very short or
very long, or the node of interest falls along a pectinate
backbone (seeOgden andWhiting, 2003, for an empirical
example).

The Indel Model

One potentially important issue in this study is the
accuracy of the indel model used as the basis of our sim-
ulations. Although very simple, the model is not tremen-
dously unrealistic, particularly for noncoding DNA.
Insertions and deletions were independently modeled
as Poisson processes, with frequency of occurrence on
each branch based (indirectly) on the branch length
and general rate parameters obtained from empirical
studies (Ophir and Graur, 1997; Sundstrom et al., 2003).

Although the decision to model insertion and dele-
tion events separately was likely inconsequential to this
study, it could have importance for future work be-
cause advances in multiple-sequence alignment have
found advantages to treating them as separate processes
(Löytynoja and Goldman, 2005). Unlike some commonly
employed indel models (e.g., Thorne et al., 1991), in our
simulations individual indel events were not restricted
to single base pairs but were drawn from a size distri-
bution. In this case, the Poisson distribution we used for
indel sizes appears to be a poor fit to empirically derived
size distributions estimated from entire genome align-
ments. (Chimpanzee Sequencing and Analysis Consor-
tium, 2005); however, it should be noted that this and
other empirically determined patterns of indel size (from
pairwise comparisons of mammalian genomes) cannot
easily be modeled by any standard theoretical distri-
bution. Despite the limitations and simplicity of our
model, the produced alignment accuracies are very sim-
ilar to those found by other researchers using alternate
indelmodels (Keightley and Johnson, 2004; Pollard et al.,
2004).
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FIGURE 8. Topological accuracy comparison of ML versus the other tree reconstruction methods (NJ, MP, and B). The shaded area represents
86% of all comparisons between ML and the other methods where there was a difference <10 in the number of replicates that recovered the
branch. Outside the shaded area are the remaining 14% of the contrasts where there was a difference ≥10 in the number of replicates that
recovered the branch. See Table 2 for a detailed breakdown of the cases outside the shaded area.

From a pure phylogenetic perspective, the details of
the indel model are likely to be of less importance
than one might suspect, as long as the total number
of gapped sites found between any pair of taxa is rea-
sonable given their evolutionary distance. The simple
reason for this is that the phylogenetic methods used
in this study completely ignore indel size and distribu-
tion; basic phylogenetic methods treat each site inde-
pendently. Gaps are either treated as missing/unknown
(e.g., in maximum parsimony) or the sites are ignored
completely (e.g., in the distance calculations of neigh-
bor joining); once aligned it does not matter whether
gaps are randomly distributed throughout the sequence
or are clustered. One could randomly rearrange the
columns of the aligned matrix without affecting the
phylogenetic reconstruction. Obviously, more compli-
cated methods and models of phylogeny reconstruc-
tion do take order and placement of gaps into ac-
count, but for the analyses performed in this study,
the specifics of gap size and distribution are of little
consequence.

Clearly, the specifics of the indel model do affect align-
ment accuracy, but as already stated, our simulations
provide accuracy curves similar to those found in other
recent studies based on completely different models. Be-
cause the goal of this study was to contrast phylogeny re-
constructions based on correctly and incorrectly aligned
data sets, any alignment errors due to incorrect model
specification simply enhance this contrast.

Method Comparison

Although our primary objective was to examine the
relationships between alignment accuracy and topolog-
ical accuracy, and the interaction of alignment accuracy
with tree shape, our results permitted performance com-
parisons of the different methods of tree reconstruction.
Although this has been done many times for fixed align-
ments (e.g., Hillis, 1995; Huelsenbeck and Rannala, 2004;
Nei, 1996; Rosenberg and Kumar, 2003; Takahashi and
Nei, 2000), the current study differs in that it takes into
account the additional variable of data sets that require
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TABLE 2. Comparison of topological accuracy of ML versus the other three methods. For each method comparison, the first column represents
the percent of all the analyses that have a reasonable difference (≥10); the next two columns show which method reconstructs the topology more
correctly, of the cases (from the first column) where there was a difference. TA = True Alignment; HA = Hypothesized Alignment (see text).

ML vs. NJ ML vs. MP ML vs. Bayesian

Reconstructs the
topology more

accurately

Reconstructs the
topology more

accurately

Reconstructs the
topology more

accurately% Of all the analyses
with a reasonable
difference (≥10) ML NJ

% Of all the analyses
with a reasonable
difference (≥10) ML MP

% Of all the analyses
with a reasonable
difference (≥10) ML B

TA 24.38 100.00% 0.00% 13.39 83.96% 16.04% 2.95 98.31% 1.69%
HA 28.22 98.76% 1.24% 13.94 62.01% 37.99% 0.80 87.50% 12.50%

alignment (Hall, 2005). Figure 8 shows that for 86% of
the cases examined in our study (on a branch by branch
comparison), therewasno reasonabledifference (defined
arbitrarily as a <10 difference in the number of replicates
that recovered the branch, as indicated by the shaded re-
gion on the graph) between ML and any of the other
methods. However, for the other 14%, ML outperformed
the remaining methods in the vast majority of cases.
Table 2 contains a breakdown of these cases where there
was a reasonable difference (≥10 replicates that recov-
ered the branch) in topological accuracy between each
method and ML. The measure comes from the number of
replicates (out of 100) that recovered the correct node(s).
ML versus NJ.—ML outperformed NJ in 100% of the

TA cases where there was a difference. Of the 28.22%
HA cases with a reasonable difference, ML was more
accurate 98.76% of the time.
ML versus MP.—When compared to MP, ML is more

accurate for both the TA and the HA (83.96% and 62.01%
of the time, respectively). Nevertheless, we know that as
alignments become less accurate, MP is less affected, and
these data show that for HA, there are many cases where
MP does outperform ML (37.99% of the time). Thus, in
general, ML will outperform MP; however, for data sets
that contain more alignment error, MP; may also out-
perform ML in many cases as well (almost 40% of the
cases in our study). These results also confirm many em-
pirical results demonstrating that alignment error can
influence the relationships of certain nodes (Lake, 1991;
Morrison and Ellis, 1997; Mugridge et al., 2000; Ogden
and Whiting, 2003; Thorne and Kishino, 1992). It could
be argued that our study is in an unfair comparison
given that the exact model that was used to simulate
the data was also given to ML during tree reconstruc-
tion, whereas no model (or unweighted parsimony) was
used in MP. Clearly this is a simple case and future
studies need to address the issue of performance where
both methods have the “wrong model.” This would
be particularly important as real data are most likely
much more complicated than any currently constructed
model.
ML versus B.—Of the very few cases where a reason-

able difference was found between ML and B (2.95% for
the TA and 0.80% for the HA), likelihood was more accu-
rate most of the time (98.31% for the TA and 87.50% for
the HA). This is interesting in that, although ML and B
have essentially the same level of performance (around

97% of the cases with no reasonable difference), when
there is a difference, ML does a better job at reconstruct-
ing the correct topology. It must be noted that we did not
examine bootstrapping or posterior probabilities, rather
these comparisons were based on whether a branch was
recovered or not (strict consensus in MP and ML, and
majority rule in B). These results are similar to those Hall
(2005) foundwhencomparingacross the same fourmeth-
ods of tree reconstruction.

Alternative Branch Error (BE) Measure
Our method of estimating alignment accuracy for each

branch (BAA) is an average measure of the alignment
inaccuracy that crosses the branch, rather than an esti-
mate of the error directly associated with the branch.
As an alternate to BAA, we also estimated the amount
of alignment error generated by each branch. To do
this, we constructed a matrix containing the pairwise
alignment errors for every pair of sequences. This ma-
trix was fit onto the true simulated topology using a

FIGURE 9. Relationship of Branch Error (BE) and topological accu-
racy, asmeasuredby thenumberof replicates (outof 100) that recovered
each branch. Each point represents a single internal branch from a spe-
cific model tree. Points to the far left are data sets that contained little
or no branch alignment error, whereas points to the right contained
more alignment error. Only the ML analyses are shown on this graph,
but the other methods show the same general trend.
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least-squares fit procedure (in the exact same manner
an evolutionary distance matrix may be fit onto a topol-
ogy in order to evaluate a minimum evolution model).
This led to an alignment error estimate for each branch
(BE) that indicates the proportion of misaligned sites
that can be attributed to the branch itself. This mea-
sure had some rather interesting, but otherwise useless
properties, but we think it bears mentioning nonethe-
less. The first is that the fit worked very well, such
that large alignment errors were associated with long
branches and small alignment errors were associated
with short branches. Logically, a branch of zero length
cannot have any alignment error associated with it be-
cause no mutations would have occurred and identical
sequences align perfectly, whereas long branches gener-

FIGURE 10. Results of the three ways branch length was quantified: the nodal branch length (length of the branch being analyzed); the sum
of the nodal branch length and the lengths of the four neighboring branches; and the average length of the four neighboring branches minus
the nodal branch length. Each branch length summary is plotted against the TAA (Total Alignment Accuracy), the number of replicates (out of
100) that recovered each branch, and the difference between the True Alignment (TA) reconstructions and the Hypothesized Alignment (HA)
reconstructions in the number of replicates (out of 100) that recovered each branch. For the TAA row (a–c), all tree shape cases and methods are
pooled together, whereas in the remaining panels (d–i) results are separated by tree reconstruction method.

ate many mutations and lead to greater levels of mis-
alignment (Rosenberg, 2005a). In fact, the correlation
between BE and branch length is r = 0.7323 across all
simulated data sets. The (initially) unexpected result is
found when one examines the relationship between BE
and branch reconstruction accuracy (Fig. 9). Branches
with large amounts of alignment error are reconstructed
accuratelywhereas thosewith little to no alignment error
are often reconstructed poorly. This apparently paradox-
ical result is explained by the correlation between branch
length and BE. Extremely short branches may not lead
to alignment error but, as is well known, are difficult
to reconstruct. Long branches may lead to more align-
ment error, but are also easier to reconstruct because of
the increased number of character changes associated
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with the branch. Figure 9 really indicates the relation-
ship between branch length and branch reconstruction
accuracy; the alignment error generated by a branch is
essentially inconsequential relative to other topological
factors. This is why BAA is a more informative measure;
it accounts for global trends in alignments associated
with a specific branch rather than just local alignment
properties.

Branch Length

As demonstrated above with BE, branch length is
clearly an important aspect of alignment and topolog-
ical accuracy. In order to further investigate its role, we
quantified branch length three different ways (Fig. 10):
(1) nodal branch length (length of the branch that sepa-
rates the tree into two clades); (2) sumof thenodal branch
length and the lengths of the four neighboring branches;
and (3) average length of the four neighboring branches
minus the nodal branch length. Our results indicate that
as nodal branch length increases, TAA decreases. This is
true for the nodal branch (Fig. 10a) but even more so as
the lengths of the neighboring branches are also consid-
ered (Fig. 10b and c).

Given that long branches lead to more alignment er-
ror, it is logical to conclude that as branch lengths in-
crease, topological accuracy should decrease. However,
our results indicate that as the nodal branch length in-
creases, topological accuracy also increases (Fig. 10d). Of
course, if extremely long lengths were used, one would
expect the curve to decrease as the sequences become
saturated. This counterintuitive result may be explained
in the same way as above (BE section). The results for
the sum of the five branches (Fig. 10e) and the aver-
age length of the four neighboring branches minus the
length of the nodal branch (Fig. 10f) indicate that as
neighboring branch length increases, topological accu-
racy decreases. Therefore, the lengths of the neighboring
branches may actually be the leading factor that causes
low topological accuracy, confirming many ideas in the
well-documentedphenomenonof longbranch attraction
(Bergsten, 2005; Felsenstein, 1978; Gadagkar et al., 2005;
Huelsenbeck, 1995, 1997; Huelsenbeck and Hillis, 1993;
Siddall and Whiting, 1999; Whiting, 1998).

A related result is seen in the replicates difference
(TArep − HArep) value and its relationship to the nodal
branch length (Fig. 10g), the sum of the five branches
(Fig. 10h), and the average length of the four neighbor-
ing branches minus the nodal branch length (Fig. 10i). As
length increases on the nodal branch, there is little to no
difference between the number of replicates from the TA
and HA that recover that node. Yet, as the neighboring
branches become longer than the nodal branch, TA tree
reconstructions outperform HA tree reconstructions by
recovering the nodal branch in more replicates (a differ-
ence reaching nearly 40 in ML and B, and around 20 in
MP and NJ in Fig. 10i).

Thus, we see that the lengths of both the nodal branch
and the neighboring branches influence the alignment
accuracy, although the neighboring branch lengths may
be more important for topological accuracy.

CONCLUSION

This study represents an initial important step into
understanding the influence of alignment accuracy on
phylogenetic inference. We presented two measures of
alignment accuracy, TAA and BAA, which were used
to investigate the relationship of alignment error and
tree reconstruction. It has been shown (on the average)
that for more balanced tree shapes and shorter branch
lengths, alignment error may have little affect on topo-
logical reconstruction, and that for more pectinate tree
shapes and longer branches, the effect is much more
pronounced. However, any one hypothesized alignment
may give you a topology that is very accurate, very inac-
curate, or something in between. It is difficult to predict
this on a case by case basis, but this study does con-
firm that the alignment can drive the resultant accuracy.
Under the studied conditions, maximum likelihood and
Bayesian, in general, outperformed the other methods
(neighbor joining and maximum parsimony) in terms of
tree reconstruction accuracy. Branch length also played
an important role in both alignment accuracy and topo-
logical accuracy. We recognize that there are many other
factors that may play a part in alignment and topological
accuracy in addition to the ones studied here. However,
“youhave to start somewhere” (Strunk andWhite, 1918),
and we choose to begin by primarily investing the affects
of tree shape. Hence, many potential variables (such as
point substitution and indel models) that could influ-
ence both alignment and tree reconstruction were held
constant in this study and future efforts will be required
to elucidate their effects.
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Löytynoja, A., and N. Goldman. 2005. An algorithm for progressive
multiple alignment of sequences with insertions. Proc. Natl. Acad.
Sci. USA 102:10557–10562.

Lunter, G., I. Miklos, A. Drummond, J. Jensen, and J. Hein. 2005.
Bayesian coestimation of phylogeny and sequence alignment. BMC
Bioinformatics 6:83.

Maddison, W. P., and D. R. Maddison. 2004. Mesquite: A modular sys-
tem for evolutionary analysis, version 1.05.

Metzler, D. 2003. Statistical alignment based on fragment insertion and
deletion models. Bioinformatics 19:490–499.

Miklos, I., G. A. Lunter, and I. Holmes. 2004. A ”long indel” model for
evolutionary sequence alignment. Mol. Biol. Evol. 21:529–540.

Mitchison,G., andR.Durbin. 1995. Tree-basedmaximal likelihood sub-
stitution matrices and hidden Markov models. J. Mol. Evol. (Hist.
Arch.) 41:1139–1151.

Mitchison, G. J. 1999. A probabilistic treatment of phylogeny and se-
quence alignment. J. Mol. Evol. 49:11–22.

Mooers, A. O., R. D. M. Page, A. Purvis, and P. H. Harvey. 1995. Phylo-
genetic noise leads to unbalanced cladistic tree reconstructions. Syst.
Biol. 44:332–342.

Morrison,D., and J.Ellis. 1997.Effectsofnucleotide sequencealignment
onphylogenyestimation:Acase studyof 18S rDNAsof apicomplexa.
Mol. Biol. Evol. 14:428–441.

Mugridge, N. B., D. A. Morrison, T. Jakel, A. R. Heckeroth, A. M. Ten-
ter, and A. M. Johnson. 2000. Effects of sequence alignment and
structural domains of ribosomal DNA on phylogeny reconstruc-
tion for the protozoan family Sarcocystidae. Mol. Biol. Evol. 17:1842–
1853.

Nei,M. 1996. Phylogenetic analysis inmolecular evolutionary genetics.
Ann. Rev. Genet. 30:371–403.

Ogden, T. H., and M. Whiting. 2003. The problem with “the Paleoptera
problem”: Sense and sensitivity. Cladistics 19:432–442.

Ogden, T. H., M. F. Whiting, and W. C. Wheeler. 2005. Poor taxon sam-
pling, poor character sampling, and non-repeatable analyses of a
contrived dataset do not provide a more credible estimate of insect
phylogeny: A reply to Kjer. Cladistics 21:295–302.

Ophir, R., and D. Graur. 1997. Patterns and rates of indel evolution
in processed pseudogenes from humans and murids. Gene 205:191–
202.

Phillips, A., D. Janies, and W. Wheeler. 2000. Multiple sequence
alignment in phylogenetic analysis. Mol. Phylogenet. Evol. 16:317–
330.

Pollard,D., C. Bergman, J. Stoye, S. Celniker, andM. Eisen. 2004. Bench-
marking tools for the alignment of functional noncoding DNA. BMC
Bioinformatics 5:6.

Redelings, B., and M. Suchard. 2005. Joint Bayesian estimation of align-
ment and phylogeny. Syst. Biol. 54:401–418.

Rivas, E., and S. Eddy. 2001. Noncoding RNA gene detection using
comparative sequence analysis. BMC Bioinformatics 2:8.

Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic
trees. Math. Biosci. 53:131–147.

Rosenberg, M. S. 2005a. Evolutionary distance estimation and fidelity
of pair wise sequence alignment. BMC Bioinformatics 6:102.

Rosenberg, M. S. 2005b. Multiple sequence alignment accuracy and
evolutionary distance estimation. BMC Bioinformatics 6:278.

Rosenberg, M. S. 2005c. MySSP: Non-stationary evolutionary sequence
simulation, including indels. Evol. Bioinformatics Online 1:51–53.

Rosenberg, M. S., and S. Kumar. 2003. Heterogeneity of nucleotide fre-
quencies among evolutionary lineages and phylogenetic inference.
Mol. Biol. Evol. 20:610–621.

Siddall, M. E., and M. F. Whiting. 1999. Long-branch abstractions.
Cladistics 15:9–24.

Strunk, W., and E. B. White. 1918. The elements of style, 4th edition.
Allyn and Bacon, Boston.

Sundstrom, H., M. T. Webster, and H. Ellegren. 2003. Is the rate of in-
sertion and deletion mutation male biased?: Molecular evolutionary
analysis of avian and primate sex chromosome sequences. Genetics
164:259–268.

Swofford, D. L. 2002. PAUP∗ Phylogenetic analysis using parsimony
(∗and other methods), version 4.0b10. Sinauer Associates, Sunder-
land, Massachusetts.

Takahashi, K., and M. Nei. 2000. Efficiencies of fast algorithms
of phylogenetic inference under the criteria of maximum par-
simony, minimum evolution, and maximum likelihood when a
large number of sequences are used. Mol. Biol. Evol. 17:1251–
1258.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W:
Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penal-
ties and weight matrix choice. Nucleic Acids Res. 22:4673–
4680.

Thorne, J. L., and H. Kishino. 1992. Freeing phylogenies from artifacts
of alignment. Mol. Biol. Evol. 9:1148–1162.



328 SYSTEMATIC BIOLOGY VOL. 55

Thorne, J. L., H. Kishino, and J. Felsenstein. 1991. An evolutionary
model for themaximum likelihood alignment of sequence evolution.
J. Mol. Evol. 33:114–124.

Thorne, J. L., H. Kishino, and J. Felsenstein. 1992. Inching toward re-
ality: An improved likelihood model of sequence evolution. J. Mol.
Evol. 34:3–16.

Titus, T. A., and D. R. Frost. 1996. Molecular homology assessment and
phylogeny in the lizard family Opluridae (Squamata: Iguania). Mol.
Phylogenet. Evol. 6:49–62.

Wenzel, J. W., and M. E. Siddall. 1999. Noise. Cladistics 15:51–64.
Wheeler, W. 2001. Homology and the optimization of DNA sequence

data. Cladistics 17:S3–S11.

Wheeler, W. C. 1995. Sequence alignment, parameter sensitivity, and
the phylogenetic analysis of molecular data. Syst. Biol. 44:321–
331.

Whiting, M. F. 1998. Long-branch distraction and the Strepsiptera. Syst.
Biol. 47:134–138.

Xia, X., Z. Xie, and K. M. Kjer. 2003. 18S ribosomal RNA and tetrapod
phylogeny. Syst. Biol. 52:283–295.

First submitted 14 July 2005; reviews returned 17 October 2005;
final acceptance 25 November 2005

Associate Editor: Rod Page


