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Abstract

The common formula used for converting a chi-square test into a correlation coefficient for use as an effect size in meta-
analysis has a hidden assumption which may be violated in specific instances, leading to an overestimation of the effect size.
A corrected formula is provided.
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Introduction

One of the fundamental concepts in systematic and comparative

reviews such as meta-analysis is that of the effect size. An effect size

is a statistical parameter that can be used to compare, on the same

scale, the results of different studies in which a common effect of

interest has been measured [1,2]. In experimental studies, the

effect size is a measurement of the response of the subjects to an

experimental treatment relative to a control group. All effect size

measures are a means of representing the results of primary

research in a common way so that the results from individual

studies can be compared and evaluated [1]. While a number of

alternate metrics have been suggested for measuring effect size,

including standardized mean differences and odds ratios [3,4],

historically, one of the more popular measures of effect has been

the correlation coefficient [5,6,7,8,9,10]. The correlation coeffi-

cient is widely used, easily interpretable, and has the added bonus

of being easily determinable from other commonly used statistics

such as z-scores, t-tests, F-statistics, and x2 statistics [3,11]. These

conversions can only be performed for single, focused contrasts

(e.g., cases with a single degree of freedom), but otherwise follow

simple equations. For example, the equation for converting a x2

into a correlation [11,12] is:

r~

ffiffiffiffiffiffiffi
x2

1½ �
n

s
, ð1Þ

where the x2 value comes from a two-group contrasts (thus a single

degree of freedom) and n is the total number of samples; the sign of

the correlation needs to be determined from independent study of

the contrast. (x2 tests with more than one degree of freedom are

unfocused omnibus tests, and require a much more complicated

procedure for conversion to an effect size; see [13,14,15] for

details). Equation (1) has been used to convert x2 tests into a

correlation coefficient for use as an effect size for 45 years [12];

unfortunately, this equation has an underlying, never-stated

assumption which is sometimes violated, particularly for genetics

studies: it assumes that the expected values from the x2 test are

equal for both groups.

Results and Discussion

Recall that the x2 is calculated simply as

x2~
X Oi{Eið Þ2

Ei

, ð2Þ

where Oi and Ei are the observed and expected counts,

respectively, for group i. Equation (1) assumes that the expected

values for the two groups are equal, that is, E1 = E2 = n/2. For the

vast majority of x2 tests this assumption probably holds and

equation (1) is correct. However, when this assumption is not met

(e.g., if the expected values are for a phenotypic ratio of 3:1 from a

standard Mendelian di-heterozygous dominant-recessive cross),

equation (1) is incorrect and will overestimate the effect size

(occasionally even producing ‘‘correlations’’ greater than one).

The problem is specifically found in the denominator of the

equation. Rather than the sample size, the denominator should

actually be the maximum possible x2 value obtainable for that

sample size and expected values:

r~

ffiffiffiffiffiffiffiffiffi
x2

1½ �
x2

max

s
: ð3Þ

Written this way, the logic of the equation can be interpreted as r2

being equal to the ratio of observed x2 to the maximum possible
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x2, a not atypical way of expressing the variance explained in a

sums-of-squares framework. In the common case where one

expects an equal distribution of observations among the two

groups (E1 = E2 = n/2), this maximum possible value is equal to n

(see Methods), making equation (1) correct.

On the other hand, if the expected values for the two groups are

not the same, the maximum possible value is larger than n.

Specifically, if the ratio of expectations among the two groups is

k:1, where k represents the larger group (k$1), the maximum

possible x2 value is equal to nk (see Methods). The general form of

the conversion of a x2 value to r should therefore be

r~

ffiffiffiffiffiffiffi
x2

1½ �
nk

s
: ð4Þ

As would be expected, this generalized form simplifies to the

commonly used equation when the expected ratio of observations

is 1:1 (i.e., k = 1).

As a simple example, imagine a genetic cross of two

heterozygous individuals for a pair of alleles with a simple

dominant-recessive relationship. The expectation is a phenotypic

ratio of 3:1, in favor of the dominant phenotype. With 22 total

offspring, the expected counts are 16.5 and 5.5, respectively. The

actual observation is almost the reverse, with 16 found to have the

recessive phenotype and only 6 having the dominant phenotype.

The x2 value for this cross is 26.7 (some additional factor is clearly

skewing the expected phenotypic ratio). Using the traditional

transformation from equation (1), one would determine an effect

size r = 1.10, a value outside the acceptable range of r, impossible

to interpret or use in a summary analysis (which generally requires

use of Fisher’s z-transform). Taking into account the adjusted

formula due to the assumption of unequal expectations, we instead

find an effect size of r = 0.64, still quite strong, but logically

interpretable and meaningful.

It is difficult to determine how often, if ever, equation (1) has

been misapplied, because one could not simply go through

published meta-analyses looking for x2 conversions, but would

rather have to go back to the original studies used in each meta-

analysis to determine how the x2 test was actually calculated.

Fortunately, the assumption of equal expectation among groups

likely holds for the majority of x2 tests. However, those who work

in fields or encounter data where this assumption is not true (e.g.,

heredity experiments), need to be aware of the alternate

formulation to use for their specific work, particularly as meta-

analysis and other statistics that make use of effect size continue to

become more common [16].

Methods

Derivation of maximum possible x2 value for two groups
when the expectation is an equal distribution of counts
among the groups

The x2 value is calculated as

x2~
X Oi{Eið Þ2

Ei

, ð5Þ

where Oi and Ei are the observed and expected values for the ith

group. In a x2 test with only two groups with n total observations,

if the expectation is an equal distribution of observations among

groups, the expected value of each of the two groups will be n/2.

The maximum possible x2 value will be obtained if one group

contains all of the observations and the other group contains zero

observations, thus

x2
max~

n{n=2
� �2

n=2
z

0{n=2
� �2

n=2

~
n=2
� �2

n=2
z

n=2
� �2

n=2
~n=2zn=2~n:

ð6Þ

The maximum possible x2 value for a two group case where the

expected distribution of outcomes is evenly distributed among the

two groups is simply the total sample size.

Derivation of maximum possible x2 value for two groups
when the expectation is not an equal distribution of
counts among the groups

If the expectation among the two groups is not equal, we have

to make the following change. The expected ratio between the two

groups will be k:1, where k is how many times larger one group is

expected to be relative to the other (k$1). In this case the expected

values are nk/(k+1) and n/(k+1), respectively (Note that if k = 1, we

have an expected ratio of 1:1, leading both expectations to equal

n/2 and the special case described above). Given these new

expectations, the maximum possible x2 value will be when the

group with the ‘‘nk’’ expectation (the larger expectation) contains 0

observations and the other group (the smaller expectation)

contains all n observations. In this case, the maximum possible

x2 value becomes:

x2
max~

0{nk= kz1ð Þ
� �2

nk= kz1ð Þ
z

n{n= kz1ð Þ
� �2

n= kz1ð Þ

~

nk= kz1ð Þ
� �2

nk= kz1ð Þ
z

n kz1ð Þ= kz1ð Þ{n= kz1ð Þ
� �2

n= kz1ð Þ

~
nk

kz1ð Þz
nkzn= kz1ð Þ{n= kz1ð Þ
� �2

n= kz1ð Þ

~
nk

kz1ð Þz
nk= kz1ð Þ
� �2

n= kz1ð Þ
~

nk

kz1ð Þz
n2k2

.
kz1ð Þ2

n= kz1ð Þ

~
nk

kz1ð Þz
nk2

kz1ð Þ~
nk2znk

kz1ð Þ ~
nk(kz1)

kz1ð Þ ~nk

ð7Þ

Again, if the expectation is even, k = 1, and the maximum x2 value

is simply n.

Acknowledgments

Thanks to M. Lajeunesse and M. Jennions for discussion and comments on

early versions of the manuscript.

Author Contributions

Conceived and designed the experiments: MSR. Performed the experi-

ments: MSR. Analyzed the data: MSR. Contributed reagents/materials/

analysis tools: MSR. Wrote the paper: MSR.

Effect Sizes from Chi-Square

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e10059



References

1. Cooper HM (1998) Synthesizing Research: A Guide for Literature Reviews.
Beverly Hills, CA: Sage. 201 p.

2. Rosenberg MS, Rothstein H, Gurevitch J (In press) Effect sizes: Choices and
calculations. In: Koricheva J, Gurevitch J, Mengersen KL, eds. Handbook of

meta-analysis in ecology and evolution. Princeton, NJ: Princeton University
Press.

3. Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin. Statistical Software

for Meta-Analysis. 2.0 ed. Sunderland, Massachusetts: Sinauer Associates.
4. Hedges LV, Olkin I (1985) Statistical Methods for Meta-Analysis. San Diego,

CA: Academic Press, Inc. 369 p.
5. Britten HB (1996) Meta-analyses of the association between multilocus

heterozygosity and fitness. Evolution 50: 2158–2164.

6. Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline:
A meta-analysis of the patch size effect. Ecology 79: 517–533.

7. Møller AP, Thornhill R (1998) Bilateral symmetry and sexual-selection: A meta-
analysis. American Naturalist 151: 174–192.

8. Reed DH, Frankham R (2001) How closely correlated are molecular and

quantitative measures of genetic variation? A meta-analysis. Evolution 55:
1095–1103.

9. Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant

antiherbivore defenses. Ecology 83: 176–190.

10. Rosenthal R, Rubin DB (1978) Interpersonal expectancy effects: The first 345

studies. Behavioral and Brain Sciences 3: 377–386.

11. Rosenthal R (1994) Parametric measures of effect size. In: Cooper H,

Hedges LV, eds. The Handbook of Research Synthesis. New York: Russell

Sage Foundation. pp 231–244.

12. Cohen J (1965) Some statistical issues in psychological research. In: Wolman BB,

ed. Handbook of Clinical Psychology. New York: McGraw-Hill. pp 95–121.

13. Rosenthal R, Rosnow RL (1985) Contrast analysis: Focused comparisons in the

analysis of variance. New York: Cambridge University Press.

14. Rosenthal R, Rosnow RL (1991) Essentials of Behavioral Research: Methods

and Data Analysis. New York: McGraw-Hill.

15. Rosenthal R, Rosnow RL, Rubin DB (2000) Contrast and effect sizes in

behavioral research: A correlational approach. Cambridge: Cambridge

University Press. 212 p.

16. Koricheva J, Gurevitch J, Mengersen KL, eds (In press) Handbook of meta-

analysis in ecology and evolution. Princeton, NJ: Princeton University Press.

Effect Sizes from Chi-Square

PLoS ONE | www.plosone.org 3 April 2010 | Volume 5 | Issue 4 | e10059


