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THE FILE-DRAWER PROBLEM REVISITED: A GENERAL WEIGHTED METHOD FOR
CALCULATING FAIL-SAFE NUMBERS IN META-ANALYSIS
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Abstract. Quantitative literature reviews such as meta-analysis are becoming common in evolutionary biology but
may be strongly affected by publication biases. Using fail-safe numbers is a quick way to estimate whether publication
bias is likely to be a problem for a specific study. However, previously suggested fail-safe calculations are unweighted
and are not based on the framework in which most meta-analyses are performed. A general, weighted fail-safe
calculation, grounded in the meta-analysis framework, applicable to both fixed- and random-effects models, is proposed.
Recent meta-analyses published in Evolution are used for illustration.
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Meta-analysis is becoming a common tool for combining
results of independent studies in evolutionary biology
(Møller and Thornhill 1997; 1998; Arnqvist and Nilsson
2000; Reed and Frankham 2001; Crnokrak and Barrett 2002;
Møller and Jennions 2002; Coltman and Slate 2003; Gar-
amszegi and Møller 2004). Literature reviews, especially
quantitative reviews such as meta-analysis, have the potential
to be affected by publication bias (Møller and Jennions 2001
Jennions and Møller 2002a,b), the selective publication of
articles showing certain types of results over those showing
other types of results. The most commonly suspected pub-
lication bias is the tendency for journals to only publish stud-
ies with statistically significant results; the lack of nonsig-
nificant published studies has been termed the ‘‘file-drawer
problem’’ (Rosenthal 1979). This bias in publication will lead
to an overestimate of the number of significant results on a
given topic. A number of methods have been suggested to
identify, model, and deal with publication bias (Rosenthal
1979; Orwin 1983; Begg 1985; Hedges and Olkin 1985; Begg
and Berlin 1988; Hedges 1992; Begg and Mazumdar 1994;
Hedges and Vevea 1996; Wang and Bushman 1998; Palmer
1999; Duval and Tweedie 2000a,b). One of the simplest is
the calculation of a fail-safe number. A fail-safe number in-
dicates the number of nonsignificant, unpublished (or miss-
ing) studies that would need to be added to a meta-analysis
to reduce an overall statistically significant observed result
to nonsignificance. If this number is large relative to the
number of observed studies, one can feel fairly confident in
the summary conclusions. Fail-safe numbers are not neces-
sarily the best way to approach publication bias, but they are
a simple first step that can help identify whether more com-
plex approaches are necessary.

The original and most commonly used fail-safe calculation
was suggested by Rosenthal (1979). This method calculates
the significance of multiple studies by calculating the sig-
nificance of the mean Z-score (the mean of the standard nor-
mal deviates of each study). Rosenthal’s method calculates
the number of additional studies, NR, with mean null result

necessary to reduce the combined significance to a desired
a level (usually 0.05). NR is calculated as

23 Z( p )4O i
N 5 2 n, (1)R 2Za

where n is the number of studies, Z(pi) are the Z-scores for
the individual significance values, and Za is the one-tailed Z-
score associated with the desired a.

An alternative method, proposed by Orwin (1983), is based
on Cohen’s d (1969), an effect size estimate that measures
the standardized difference between treatment and control
means, although it is equally applicable to other similar mea-
sures of effect size. It calculates the number of additional
studies, NO, needed to reduce an observed mean effect size
to a desired minimal effect size. NO is calculated as

¯ ¯n(E 2 E )o mN 5 , (2)O ¯ ¯E 2 Em n

where n is the number of studies, ĒO is the mean of the
original n studies, Ēn is the mean of the additional NO studies,
and Ēm is the desired minimal mean effect size. Cohen (1969)
defines a standardized mean difference effect size of 0.2 as
‘‘small,’’ 0.5 as ‘‘medium,’’ and 0.8 as ‘‘large.’’ Generally,
the minimal effect size chosen using Orwin’s calculation is
0.2 (e.g., VanderWerf 1992).

These methods have a number of disadvantages. The first
is that they are both explicitly unweighted. One of the primary
attributes of contemporary meta-analysis is weighting; stud-
ies with large sample size or small variance are given higher
weight than those with small sample sizes or large variance.
Neither method accounts for the weight of the observed or
the hypothesized unpublished studies. A second problem with
Rosenthal’s method is that the method of adding Z-scores is
not normally the method by which one combines studies in
a meta-analysis; most modern meta-analyses are based on the
combination of effect sizes, not simply significance values
(Rosenberg et al. 2000). Rosenthal’s calculation is therefore
not precisely applicable to the actual significance obtained
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from a meta-analysis. Orwin’s method is not based on sig-
nificance testing; the choice of a desired minimal effect size
to test the observed mean against seems unstable without a
corresponding measure of variance.

Because the above methods do not contain any specifi-
cation of the sample size of the studies involved, L’Abbé et
al. (1987) suggested simulating a single study of large neg-
ative effect and determining the sample size of that study
necessary to raise an observed significance above 0.05. Sim-
ilarly, they suggested simulating several relatively small
studies of no effect and calculating how many of these studies
it would take to raise an observed significance above 0.05.

Here I illustrate an approach for directly calculating a fail-
safe number that is explicitly grounded in the way meta-
analyses are normally conducted, including the methods by
which we calculate mean effect sizes, weighting, and sig-
nificance testing (software for performing these analyses is
available at the author’s website: http://lsweb.la.asu.edu/
rosenberg). In general, we begin a meta-analysis with n in-
dependent studies, each with an observed effect size Ei and
variance . The nature of the effect size depends on the2si

parameters being studied but is commonly a Z-transformed
correlation coefficient, a standardized difference between
means from a control and experiment, or an estimate of risk
from a 2 3 2 table, such as the odds ratio, risk difference,
or relative risk (Rosenberg et al. 2000). Each study will be
weighted by the inverse of its variance, wi 5 1/ . The mean2si

effect size is calculated as a weighted average: the sum of
the product between individual effects and their weights di-
vided by the sum of the weights,

w EO i i
Ē 5 , (3)

wO i

with variance

12s 5 . (4)Ē wO i

Note that this generalization is true regardless of the effect
size being used (Rosenberg et al. 2000). The typical way of
testing whether this mean differs from some null value O
would be via a t-test:

Ē 2 O
t 5 . (5)s
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For most metrics, the null O equals zero, leading to the sim-
plification:

Ē
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Substituting equations (3) and (4), we find:
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When calculating a fail-safe number, the question being

asked is how many new studies of mean null effect (zero)
would need to be added to the analysis to produce a t-score
at a desired significance level a (e.g., 0.05)? If the mean
effect of the new studies is zero, and W9 is the amount of
additional weight needed to produce the desired a level, equa-
tion (7) would become:

2
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Solving for W9,

2
w E1 2O i i

W9 5 2 w , (9)O i2ta(v)

where v represents the degrees of freedom (see below). Di-
viding W9 by the mean weight [(Swi)/n] yields

nW9
N 5 . (10)

wO i

N is equivalent to the number of studies of null effect and
mean weight necessary to reduce the observed significance
level to a. N could also be interpreted as the relative size of
a single study of no effect needed to reduce the significance
level to a, where relative size means that the single study
would need to be weighted N times the mean weight. Because
we expect weights to be roughly proportional to the sample
size of each study (for some metrics this is exactly the case),
N could also be thought of as an estimate of how many times
larger the sample size of a single study (compared to the
mean sample size) would need to be to reduce the significance
of the mean effect to a.

One immediate complication is that the degrees of freedom
of the t-test (v) is based on the number of studies used to
construct the mean. If N is being interpreted as the relative
size of a single study v 5 n 2 1 1 1 5 n. However, if N is
being interpreted as multiple studies of mean weight, v 5 n
1 N 2 1. In this case, N must be solved for iteratively (es-
timate N with the original degrees of freedom, then recal-
culate with the adjusted degrees of freedom, and repeat until
N stabilizes). Because variation in t is quite small with even
moderate degrees of freedom, only a few iterations are re-
quired for convergence. To differentiate between the inter-
pretations of N, the single study value will be designated N1;
the multiple study value N1. Although one could avoid the
degrees-of-freedom issue by using the standard normal dis-
tribution (as is usually suggested in the older meta-analysis
literature), the sample size in many meta-analyses can be
quite small and it seems wise to err conservatively.

A primary assumption of N1 is that the missing studies
have similar sample sizes to those that were included in the
original analysis. This may not be true; in fact, it is generally
assumed that the majority of unpublished studies have small-
er sample sizes than those found in the literature. This would
make N1 a minimal estimate because smaller studies would
naturally lead to even larger fail-safe estimates. However,
one can easily adjust the iterative procedure to find the num-
ber of necessary unpublished studies with any desired frac-
tion of the mean weight.
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TABLE 1. Fail-safe numbers calculated by the described methods for data on microsatellite measures of inbreeding from Coltman and
Slate (2003). Only a subset of their significant results are presented. Mean effect sizes are estimated as Z-transformed correlation
coefficients under a fixed-effects model (mean effects sizes under the random-effects model are not shown); n indicates the number of
studies; NR is Rosenthal’s fail-safe number; N1 was calculated for a single additional study; N1 was calculated for many studies of mean
weight. The desired a 5 0.05 for all methods. An asterisk indicates the fail-safe number is robust (. 5n 1 10); a dash indicates the
random-effects model collapses to the fixed model; n.s. indicates the effect size estimate was not significant. Most discrepancies between
the numbers below and those in the original publication are due to rounding.

Variable n Fixed effect NR

Fixed

N1 N1

Random

N1 N1

Multilocus heterozygosity
All traits 115 0.0274 2273* 530 541 323 —
Life history 47 0.0858 1274* 637* 671* 184 —
Life history (mammal) 24 0.0982 383* 198* 220* 48 —
Published studies 50 0.1088 1916* 999* 1049* 219 —

Mean d2

All traits 110 0.0156 779* 77 79 67 85
Life history 54 0.0479 472* 171 179 55 —
Life history (mammal) 21 0.0453 34 11 13 n.s. n.s.
Published studies 38 0.0816 696* 291* 311* 55 —

Another assumption of these methods is the use of a fixed-
effects model (Gurevitch and Hedges 1993; Hedges and Vev-
ea 1998; Overton 1998; Rosenberg et al. 2000). Use of the
alternative, the random-effects model, can be quite contro-
versial (Gurevitch and Hedges 1993; Greenland 1994; Rau-
denbush 1994). In a random-effects model, individual studies
are not weighted by simply the inverse of the variance, but
rather as

1
9w 5 , (11)i 2 2s 1 si pooled

where is an estimate of the pooled variance. All other2spooled
calculations (e.g., mean effect and variance) proceed iden-
tically using this new weight. For a general meta-analysis
with no internal data structure, the pooled variance is esti-
mated as

Q 2 (n 2 1)T2s 5 , (12)pooled 2wO iw 2O i
wO i

where QT is the total heterogeneity, measured as
2¯Q 5 w (E 2 E ) . (13)OT i i

The original fail-safe calculations are based on the fixed-
effect model; using a similar approach we can estimate a fail-
safe number for random-effects model meta-analysis. How-
ever, the necessity of estimating the pooled variance com-
plicates the determination of a fail-safe number. Although N
is generally thought to be the number of studies of null effect
necessary to change a significant outcome, in the fixed-effects
calculations described above, these studies need only have
an average effect of zero. Because the random-effects model
involves a sum-of-squares calculation (in the determination
of QT), we need to explicitly assume all of the missing studies
have effects that are precisely zero. This assumption could
be avoided in part by simulating missing studies with a de-
sired variance, although this raises additional complications
and will not be explored further at this time.

Accepting the additional assumption that all missing stud-

ies have an effect of exactly zero, we can solve for the ran-
dom-effects fail-safe number iteratively, using either the N1

or N1 approach described above, recalculating QT and
each step (again, convergence usually occurs after only2spooled

a few iterations). In practice, however, an additional com-
plication quickly develops. The random-effects model op-
erates under the assumption that there is true variance around
the grand mean effect size, thus the incorporation of 2spooled

into the weights. The incorporation of this value in the de-
termination of the weights can drastically increase the var-
iance of the mean effect size; thus, one usually expects a
random-effects model to have a much smaller fail-safe num-
ber than the same data in a fixed-effects model. However,
when the estimate of equals zero (or is negative), the2spooled

analysis collapses to a fixed-effects model (Hedges and Olkin
1985). Examination of the numerator of equation (12) shows
that will become negative as the increase in the number2spooled

of studies outpaces the increase in QT. Because the hypoth-
esized studies being added to the analysis all have an effect
of zero, as studies are added the grand mean will approach
zero, rapidly reducing the increase in QT relative to the in-
crease in n. In practice, the random-effects fail-safe number
calculation of N1 will often collapse to a fixed-effects model
(this is less of a problem with N1).

Because they are directly derived from the methods used
in modern meta-analysis, the calculations described above
are necessarily more reasonable predictors of the fail-safe
number than the original approaches of Rosenthal (1979) and
Orwin (1983). In practice, Rosenthal’s fail-safe number over-
estimates the number of studies needed to reduce a meta-
analysis to nonsignificance. Table 1 illustrates fail-safe num-
bers for a set of meta-analyses on microsatellites and in-
breeding recently published in Evolution (Coltman and Slate
2003). Only a subset of the analyses for which the mean
effect was significantly different from zero are included. The
fail-safe numbers calculated with the new formula are often
significantly lower than those reported in Coltman and Slate
(2003) using Rosenthal’s method. A fail-safe number is often
considered robust if it is greater than 5n 1 10, where n is
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the original number of studies (Rosenthal 1991). Many of
the fail-safe numbers considered robust using Rosenthal’s
method in the original paper fail this criterion using the new
calculations (the criterion is fairly arbitrary; it is difficult to
consider a fail-safe number requiring more than 500 missing
studies unrobust). It must be noted that the smaller fail-safe
numbers do not imply that the results or conclusions of Col-
man and Slate (2003) are incorrect; fail-safe numbers are an
attempt to judge the robustness of results against publication
bias. Coleman and Slate account for publication bias to a
certain extent by including unpublished results in their study
(which did, in fact, have a much smaller average effect size
than published studies). As expected, random-effects model
fail-safe numbers (when they can be calculated) are usually
quite a bit smaller than their fixed-effects model equivalents.
Another recent meta-analysis in Evolution examined the cor-
relation between quantitative and molecular measures of ge-
netic variation (Reed and Frankham 2001). From 71 studies,
their average effect was 0.279 (this differs slightly from the
reported number because the authors average correlation co-
efficients directly rather than through Fisher’s Z-transfor-
mation). The fail-safe numbers for this study (not reported
by the authors) are NR 5 8473, N1 5 7586, and N1 5 7851,
all quite high. In contrast, if we were to use a random-effects
model rather than the fixed-effects model, both N1 and N1

become a rather paltry 8.
One needs to remember that a fail-safe calculation is nei-

ther a method of identifying publication bias nor a method
of accounting for publication bias that does exist. It is simply
a procedure by which one can estimate whether publication
biases (if they exist) may be safely ignored. Many approaches
to modeling and identifying publication bias have been and
continue to be developed (Begg 1985, 1994; Hedges and
Olkin 1985; Begg and Berlin 1988; Hedges 1992; Begg and
Mazumdar 1994; Hedges and Vevea 1996; Wang and Bush-
man 1998; Duval and Tweedie 2000a,b). While fail-safe num-
bers are not the best approach to dealing with publication
bias, they have certain advantages, including simplicity and
intuitive appeal. Many of the other methods require one to
estimate the potential bias by modeling the probability of
publication as a function of significance or sample size. Spec-
ification of this function gives an estimate of the degree to
which publication bias may exist in a given dataset; this bias
may then be accounted for by complex factoring of the mod-
eled missing publications. A more recent approach, the trim-
and-fill method (Duval and Tweedie 2000a,b), assumes the
data is symmetrically distributed around the mean in a funnel
plot and models missing studies to symmetrize observed
asymmetric distributions. While perhaps not as elegant as
some of these methods, a fail-safe number is much simpler
to calculate. Hopefully, the approach presented here will al-
low us to better estimate the potential for unpublished or
missing studies to alter our conclusions; a low fail-safe num-
ber should certainly encourage researchers to pursue the more
complicated publication bias methodologies.
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