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Abstract. We applied the techniques of spatial auto-
correlation (SA) analysis to 40 cancer mortality dis-
tributions in Western Europe. One of the aims of
these methods is to describe the scale over which
spatial patterns of mortalities occur, which may
provide suggestions concerning the agents bringing
about the patterns. We analyzed 355 registration
areas, applying one- and two-dimensional SA as well
as local SA techniques. We ®nd that cancer mortali-
ties are unusually strongly spatially structured, im-
plying similar spatial structuring of the responsible
agents. The small number of spatial patterns (4 or 5)
in the 40 cancer mortalities suggests there are fewer

spatially patterned agents than the number of cancers
studied. SA present in variables will bias the results of
conventional statistical tests applied to them. After
correcting for such bias, some pairwise correlations
of cancer mortality distributions remain signi®cant,
suggesting inherent, epidemiologically meaningful
correlations. Local SA is a useful technique for ex-
ploring epidemiological maps. It found homogeneous
high overall cancer mortalities in Denmark and
homogeneous low mortalities in southern Italy, as
well as a very heterogeneous pattern for ovarian
cancer in Ireland.
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Introduction

Spatial autocorrelation (SA) is the dependence of
the values of a variable at speci®ed geographic lo-
cations on the values of the variable at neighboring
locations. Spatially autocorrelated data violate the
assumption of independence required for most
standard statistical tests, calling for special tests
designed to remove the dependence of the variable
on geography. Although the recognition and anal-
ysis of SA is often associated with removing the
internal dependence of variables on the underlying
spatial structure during hypothesis testing, the
analysis of spatial autocorrelation in and of itself
can lead to important discoveries about the scale
over which spatial patterns occur, which in turn may
suggest underlying factors with similar patterns.
Spatial autocorrelation analysis has been used to
study a variety of phenomena, such as the genetic
structure of plant and animal (including human)
populations [1±6], mortality patterns [7], and mor-
phological patterns [8±11]. Numerous studies have
compiled data for atlases of comparative cancer
rates for countries, counties, and regions [12±15], yet
these data have not so far been analyzed by the
techniques of spatial autocorrelation analysis. Epi-
demiology can be de®ned as the search for the de-
terminants of diseases through the study of their
occurrence and distribution [14]. SA analysis should

provide important insights into the geographic scale
over which cancers are occurring, narrowing the list
of putative causes of these diseases to those with
similar spatial pattern. The purpose of this study
was to examine the distribution of cancer mortalities
in western Europe using spatial autocorrelation
analysis. This will quantify the spatial patterns, en-
abling us to search for similarities in distribution
among di�erent cancers.

Materials and methods

Cancer mortality ®gures were taken from the Atlas
of Cancer Mortality in the European Economic
Community [14]. We used cancer mortality rates,
rather than incidence or prevalence data, because
they represented the most complete and compre-
hensive data set available for Europe at a ®ne geo-
graphic scale. Mortality rates were presented as the
gender-speci®c, age-standardized (world standard)
rate per 100,000 per annum. The atlas contains the
mortality rates for 40 cancers for each of 355 reg-
istration areas in Western Europe, comprising the 9
countries that were members of the European Eco-
nomic Community in the 1970s: Belgium, Denmark,
Eire, France, Great Britain, Italy, Luxembourg, the
Netherlands, and West Germany. The mortality
rates represented the years 1971 through 1980, the
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years of record varying slightly by country. The 40
cancers are listed in Table 1.
Each registration area was given latitude and lon-

gitude coordinates (obtained from a variety of atlas-
es), representing either the approximate center of the
area or a town or city near the center. These coor-
dinates were used to calculate the geographic distance
between each pair of areas as a great-circle distance in
kilometers.
The mortality values over the set of areas for a

speci®c cancer are referred to as a cancer mortality
surface. Simple product-moment correlations were
calculated for each pair of mortality surfaces and
their signi®cances were evaluated using a procedure
developed by Cli�ord et al. [16] that corrects for
autocorrelation of the data. This test provides a
measure of the similarity of cancer patterns, although
it does not describe what those patterns are.
To describe these spatial patterns, two common

spatial autocorrelation coe�cients were calculated
for each cancer surface, Moran's I, a product-mo-
ment coe�cient, and Geary's c, a standardized
squared-distance measure [17, 18]. Given the large
number of registration areas, autocorrelation coe�-
cients were calculated for ®fteen distance classes, each
containing an approximately equal number of dis-
tances. The upper limits of the distance classes were
222, 342, 438, 525, 613, 702, 787, 872, 959, 1061,
1176, 1308, 1485, 1747, and 2865 km. Our experience
is that studies with such a large sample size are not
sensitive to the number of chosen distance classes.
When plotted against distance, these coe�cients
produce a one-dimensional spatial correlogram [17,
19±21]. Moran's I and Geary's c often lead to similar
conclusions, and were fairly compatible in the present
study. We will report only the results for Moran's I,
referring to those of Geary's c only when they di�er
substantially. Values of Moran's I range approxi-
mately from 1 (positive SA) to )1 (negative SA), with
an expected value of )1/(n) 1), where n is the number
of localities. The autocorrelation coe�cients were
calculated using the SAAP program [22]. The overall
signi®cance of each correlogram was evaluated using
the Bonferroni test suggested by Oden [23].
We used k-means cluster analysis [24] to group the

cancers by their correlograms. This analysis starts by
randomly assigning each correlogram to one of
k clusters, then shu�es the correlograms between

clusters and, by a stepwise procedure, tries to mini-
mize the sum of squared distances from each cluster
member to the cluster centroid. One hundred sepa-
rate attempts were made to optimize the k-clusters for
k � 2 to k � 10. We chose a value of k above which
the sum of squares within clusters did not decrease
appreciably.
Two dimensional correlograms [2, 25] take into

account compass bearing as well as distance. We were
able to construct distance/direction classes for 5 an-
nuli, whose outer limits are 150, 600, 1350, 2400, and
3750 km. We calculated such correlograms for each
surface using the CIRCLE program written by one of
us (NLO). The two-dimensional correlograms were
clustered using the k-means clustering scheme de-
scribed above.
The agreements between the partitions induced by

I and c and by one-dimensional and two-dimensional
correlograms, were estimated in the form of Rand
indexes [26]. We employed expression (5) of these
authors which corrects the index for chance and
normalizes it, so that perfect agreement is indicated
by an index value of 1. We tested its signi®cance by
randomly partitioning the members of one of the
marginal classi®cations into the same number of
classes as the observed data, with the same number of
correlograms per class. All randomizations were
carried out 9999 times.
The past few years have witnessed the development

of methods for local spatial autocorrelation [27±29].
This is performed by calculating a local SA coe�cient
for each individual sampling locality i, rather than for
an entire distance class. Three di�erent such coe�-
cients were calculated for each locality. Ii and ci,
which are local variants of Moran's I and Geary's c
due to Anselin [28], and G�i , which is a measure of the
amount of clustering between the individual locality i
and the neighboring sampling locations developed by
Getis and Ord [27]. Both high and low values of G�i
indicate the presence of strong positive local SA; but
high values of G�i signify clusters of relatively high
values of the variable, while low values indicate
clusters of low values. Although the signi®cance of
local SA cannot currently be estimated when there is
signi®cant overall (global) SA [30±31], we have found
relative signi®cance among the coe�cients to be a
good indicator of local spatial patterns. For each
cancer, the probability associated with each coe�-

Table 1. List of all cancers for which mortality data were available

Male and female Bladder Brain Colon/Rectum Gall bladder
Hodgkin's disease Larynx Leukemia Lung

Lymphoma Malig. melanoma Mult. myeloma Oesophagus
Oral Pancreas Stomach Thyroid
Urinary tract

Female only Breast Cervix Ovary Uterus

Male only Prostate Testis
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cient was calculated by a conditional permutation test
[27, 28, 30] for Ii and ci, and by a total permutation
test (ibid.) forG�i .These probabilities were then ranked
(Ii, ci, and G�i are all ranked separately), and the lo-
calities matching the top and bottom 10% (e.g., for
Iiÿcoe�cients the nominally most signi®cant positive
and negative values) were plotted on a map of Eu-
rope. This allows one to identify areas of relatively
high or low local spatial autocorrelation. To estimate
the average local SA pattern across all cancers, the
ranks for a given local statistic (e.g., Ii) for each lo-
cality were averaged across all cancers. These average
ranks were themselves ranked and plotted as above.

Results

The one-dimensional Moran's I correlograms of the
40 cancers are shown in Figure 1. All 40 correlograms
are signi®cant by the Bonferroni criterion [23] at
p O 0:05, and 486 out of 600 individual autocorrela-
tion coe�cients (81%) are nominally signi®cant at
p O 0:05. All 40 cancers show signi®cant positive
autocorrelation through the second distance class

(342 km). At the largest distance class (distances
greater than 1747 km), 75% of the cancers show
signi®cant negative autocorrelation. This is an ex-
tremely high level of spatial autocorrelation for ob-
servational data, with most of the cancers showing
some sort of a gradient, often referred to as a clinal
pattern. The results of the k-means clustering of the
one-dimensional correlograms revealed that these
tend to cluster into four groups (Table 2). The mean
correlograms for the four groups are show in
Figure 2. Two of the groups show a clinal pattern,
with positive autocorrelation at short distances and
negative autocorrelation at long distances, di�ering
only by the slope of the cline. The third group shows
positive autocorrelation at short distances, tapering
o� to no autocorrelation at longer distances. This
type of pattern may indicate a patchy distribution
of the variable in question, with the average patch
size approximated by the X-intercept. The ®nal group
shows strong positive autocorrelation at short dis-
tances and negative autocorrelation at intermediate
distances, returning to moderate positive autocorre-
lation at long distances. Such a pattern would be
generated when the coordinates of a bowl- or mound-
shaped surface are subjected to SA analysis. Because
only some countries in Western Europe were mem-
bers of the European Economic Community in the
1970s, the bowl shape is distorted and positive SA is
only moderate at the highest distances. But for the
farthest distances (1747 to 2865 km; e.g., Denmark
to Sicily or Shetland Islands to Sicily) the mortalities
of the 6 cancers are similar. Over distances up to
1500 km, these mortalities e�ectively form gradients.
We shall call this pattern imperfect bowl, for lack of a
better term.

In general, the results for Geary's c tend to be less
signi®cant for these data than those of Moran's I.
When applying the Bonferroni criterion [23] to the
Geary's c correlograms, larynx F and thyroid M
mortalities lack signi®cant SA. The k-means cluster-
ing of Geary's c yielded approximately the same 4
groups and patterns as did the analysis of Moran's I.
We tested the partitions induced by I and c and found

Figure 1. One-dimensional correlograms of Moran's I for
mortalities of 40 cancers. Filled circles represent the average

correlogram.

Table 2. The groups resulting from the k-means clustering of the one-dimensional correlograms of Moran's I

Strong Breast Cervix Colon/Rectum F
cline Lung F Oesophagus F Ovary

Pancreas M,F

Weak Bladder Colon/Rectum M Lymphoma M,F
cline Malignant melanoma F Multiple myeloma M,F Oral F

Testis Urinary tract F

Patchy Bladder M Brain M,F Hodgkin's disease M,F
Larynx F Leukemia M,F Lung M
Malignant melanoma M Stomach M,F Thyroid M,F

Urinary tract M Uterus

Imperfect Gall bladder M,F Larynx M Oesophagus
bowl Oral M Prostate
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a highly signi®cant (p � 0.0001) Rand index of
0.46067.
Two-dimensional correlograms account for direc-

tion as well as distance in their calculations, provid-
ing additional information on the spatial distribution
of values. Because of the additional complexity, the
two-dimensional correlograms for individual cancers
(not shown) are much more variable than the one-
dimensional correlograms. All are Bonferroni signi-
®cant at p O 0:05. The results from the k-means
clustering of the two-dimensional correlograms
(using Moran's I) are shown in Table 3, with the
mean correlograms for each cluster pictured in
Figure 3. The ®rst group (Figure 3a) shows positive
SA out to at least 600 km, with negative SA at greater
distances, oriented with a slight NE-SW cline. The
second group (Figure 3b) shows signi®cant SA, but is
nondirectional. The third group (Figure 3c) shows a
complex pattern equivalent to the one-dimensional
imperfect bowl, with the bowl oriented in a NW-SE
direction. The fourth and ®fth groups (Figures 3d
and 3e) both show clear, strong N-S clines, di�er-
ing by the strength of the cline. We compared the

partition by two-dimensional I-correlograms to
that induced by the partition of one-dimensional
I-correlograms. We found a moderate corrected
Rand coe�cient of 0.13657, signi®cant at p � 0.0075.
Maps of local SA coe�cients can reveal whether

there are areas of particularly high or low heteroge-
neity. The map of Ii for ovarian cancer (Figure 4)
reveals that Denmark, Southern Italy, and Sicily are
areas of high positive local SA, while Ireland and

Figure 2. Average one-dimensional correlograms of the
4 k-means clusters of the Moran's I correlograms. Circles:
Group 1, strong cline; diamonds: Group 2, moderate cline;
triangles: Group 3, patchy; squares: Group 4, imperfect

bowl.

Table 3. The groups resulting from the k-means clustering of the two-dimensional correlograms of Moran's I

Group 1 Bladder M,F Cervix Malignant melanoma M
Urinary tract M,F Uterus

Group 2 Colon/Rectum M Gall bladder M,F Hodgkin's disease M,F
Larnyx F Leukemia M,F Lung M,F
Multiple myeloma F Oesophagus F Oral F

Prostate Stomach M,F Thyroid M,F

Group 3 Brain M,F Larynx M Malignant melanoma F
Oesophagus M Oral M

Group 4 Breast Colon/Rectum F Multiple myeloma M
Ovary Pancreas M,F

Group 5 Lymphoma M,F Testis

Figure 3. Average two-dimensional correlograms based on
5 clusters. Values of I: white: )2.44 to )0.32; pale gray:

)0.29 to )0.13; gray: )0.12 to 0.02; dark gray: 0.03 to 0.18;
black: 0.19 to 1.21. Upper limits of distance class annuli:
150, 600, 1350, 2400, 3750 km. a, Group 1; b, Group 2;
c, Group 3; d, Group 4; e, Group 5.
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scattered areas in the low countries, Germany and
France are areas of negative local SA. Why mortality
from ovarian cancer should be so heterogeneous in
Ireland is an interesting question. The plots of G�i for
individual cancers indicate cohesive areas of relatively
high or low cancer rates. The plot of G�i for ovarian
cancer (Figure 5) indicates that clusters with the

highest rates are found in England and Denmark,
while those with the lowest rates are found in
southern Italy and nearby islands, an observation
which can be con®rmed from an examination of the
cancer mortality maps provided with the atlas [14].

An examination of Figures 4 and 5 reveals the
general relationship between Ii and G�i . Ii reveals the
areas of greatest local homogeneity: Denmark and
southern Italy; G�i indicates which of these areas
contain high mortalities (Denmark) and which con-
tain low mortalities (Southern Italy). There is no
correspondence between low values of Ii, and G�i on
these maps because low values of Ii will necessarily
lead to average values of G�i which are not displayed.

In addition to plots of individual cancers, maps of
the ranked averages across all cancers are also of
interest. Figures 6 and 7 are plots of average ranks for
Ii and G�i , respectively. The maps indicate the top and
bottom 10% of the ranked average of the ranked
probabilities of the local SA coe�cient for each
cancer.

Figure 6 shows that on average, Southern Italy,
Denmark and Southern England show the most
positive local SA; Northern Ireland, the low coun-
tries, and Northern Italy show the most negative SA.
Figure 7 reveals that the highest cancer mortality
rates are found in Denmark and in Northern Italy,
while the lowest cancer mortality rates are found in
Southern France, Southern Italy, Corsica, and Sar-
dinia. There is an interesting pattern of these local
coe�cients in Northern Italy; Ii shows negative SA
along the fringes of Northern Italy, while G�i reveals
two small tight clusters of high values. Careful in-
spection reveals that (with a single exception) these
are not the same localities. The hollow circles in

Figure 4. Map of the top (positive local SA; ®lled circles)
and bottom (negative local SA; hollow circles) of the

ranked conditional permutational probabilities of Ii for
ovarian cancer mortality. We aimed at 10% for both ends
of the distribution, but were unable to achieve that exactly.

There are more positive areas, because of tied values of Ii
and fewer negative areas, because the number of local co-
e�cients below their expected value was less than 10%. The

remaining localities are shown as dots.

Figure 5. Map of the top (spatial clusters of high mortal-

ities; ®lled circles) and bottom (spatial clusters of low
mortalities; hollow circles) 10% of the ranked total per-
mutational probabilities of Gi* for ovarian cancer mortal-

ity. The remaining localities are shown as dots.

Figure 6. Map of the top (positive local SA; ®lled circles)
and bottom (negative local SA; hollow circles) 10% of the
average ranks of conditional permutational probabilities
for Ii statistics for 40 cancer mortalities. The remaining

localities are shown as dots.
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Northern Italy in Figure 6, which represent extreme
average negative local SA, may result from the jux-
taposition of homogeneous high cancer (the ®lled
black circles in Figure 7) with nearby dissimilar lo-
cations.

Discussion

The strong spatial autocorrelation of the cancer
mortalities indicates clearly that these variables are
not spatially random. This would imply that the re-
sponsible factors are themselves SA, but does not
directly point to the identity of these factors. These
could be endogenous (examples: ethnic genetic dif-
ferences; ethnic or regional cultural di�erences, such
as in food, drink, sexual practices; etc.), or exogenous
(e.g., patterning of areas of industrial pollution, in-
tensity and duration of sunlight, regional di�erences
in recording and reporting the vital statistics, etc.). To
discover which of these factors might be important
requires further investigation.
The patterns are relatively few in number and there

is signi®cant agreement of cluster membership be-
tween the one- and two-dimensional I-correlograms,
and also between I and c. This would indicate that
there are fewer spatially patterned causal agents than
the number of cancers studied.
The cancer mortality data are among the most

strongly spatially autocorrelated observational data
we have encountered in over 20 years of research into
SA. It is well known (see, for example, [16]) that SA
in a pair of variables spuriously increases the nominal

signi®cance of the correlation between the two vari-
ables, leading to inferences about common causation
that may be unwarranted. Many of the cancers are
strongly correlated with each other. For example,
female oesophageal and lung cancers are correlated at
r � 0.775, which is signi®cant even after the degrees
of freedom are reduced to remove the e�ect of SA (by
the procedure of [16]) from 353 all the way down to 7.
Other high correlations include cancers with separate
male and female rates (e.g., cancers of the stomach,
brain, and gall bladder) and cancers that are func-
tionally correlated (e.g., female breast, ovarian, and
cervical cancers or male oral, oesophageal, and lar-
ynx cancers). In these cases the correlation may well
be epidemiologically meaningful.
Cancers whose mortality surfaces are strongly

correlated must have similar spatial correlograms.
The reverse is not true; it is quite possible to have
similar spatial patterns in uncorrelated data, espe-
cially with regard to patch size. An example in point
is shown by the three mortality surfaces for female
oesophageal cancer, ovarian cancer, and cervical
cancer. The average correlation of female oesophag-
eal cancer with ovarian and cervical cancer is 0.426.
Yet ovarian and cervical cancer correlate at 0.801.
These two have very similar patterns of high mor-
talities (in Denmark and scattered in the British
Isles), and low mortalities in much of Italy. By con-
trast, female oesophageal cancer mortalities are high
in Ireland and Britain, and low in central and south
Italy. The mean one-dimensional correlograms for
each cluster (Figure 2) indicate 2 major patch sizes
(approximately 650 and 872 km). Patch size could
signify a variety of phenomena [20]. It may indicate
the grain of carcinogenic external factors, or of ethnic
mixtures, or of cultural practices. Alternatively, patch
size could mark distances between political bound-
aries that mark di�erent standards for mortality re-
porting. This latter is potentially a major problem for
any study which uses data collected from a wide va-
riety of political entities. Potential di�erences in re-
porting were a primary concern of the authors who
compiled the cancer atlas [14].
Detailed examination of the members of the clus-

ters from the one-dimensional correlograms showed
that the strong clines have an average correlation of
0.622 between all pairs of their mortality surfaces.
This suggests that most of the patterns will be similar,
and closer inspection revealed that a north-south
cline with highs in the north and lows in the south is
the common theme of the strong clines. As we have
seen, there are variations on this theme: cervix and
ovary have high mortalities in both Denmark and the
British Isles, whereas those of female oesophageal
cancer are high only in Ireland and Britain. The weak
clines are not nearly as highly correlated. Average
correlation between all pairs of mortality surfaces
grouped as weak clines is 0.322. The patchy patterns
show very little correlation. The average of the ab-

Figure 7. Map of the top (spatial clusters of high mortali-

ties; ®lled circles) and bottom (spatial clusters of low
mortalities; hollow circles) 10% of the average ranks of
total permutational probabilities for Gi* statistics for 40

cancer mortalities. The remaining localities are shown as
dots.
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solute correlations is 0.161. In the strong and weak
clines we did not compute absolute correlations since
their r-values are all positive.

When we examine the clustering result of the two-
dimensional correlograms, we ®nd that all but one of
the group 4 surfaces corresponds to the strong clines
of the one-dimensional correlograms. Group 4 ex-
hibits an average correlation of 0.625. Group 1 has a
lower average correlation of 0.448. It is a mixture of
patchy and clinal mortality surfaces. The other three
clusters describe mostly patchy surfaces. Remember
that the locations of patches of high and low mor-
talities need not coincide to yield similar correlo-
grams. The surfaces in the cluster need only to agree
in patch size. The three clusters yield average absolute
correlations ranging from 0.169 to 0.499. Although a
common patch size hints at the possibility that the
causal agents of two cancers are the same, this need
not be true. Surfaces with di�erent appearing pat-
terns can yield similar correlograms.

Two potential sources of bias in other studies are
not of serious concern in this one. Distant noncon-
tiguous areas, such as distant island areas, will force
the upper distance classes of the correlogram to re-
¯ect mostly the di�erence, with respect to the variable
studied, between the mainland and the outlying areas.
The noncontiguous areas in this study, Britain, Ire-
land, Corsica, Sardinia, Sicily, and the Danish is-
lands, are all close enough to the mainland or to each
other so that their links to the main area fall into the
two lowest distance classes. The second source of bias
is related to the ®rst. If interlocality distances in a
region are quite disparate, then the structure shown
in the ®nely sampled areas would have no counter-
part in the coarsely sampled areas.

Although there is some disparity in size of the
registration areas, (the largest areas are in West
Germany, the smallest in Great Britain and Ireland),
the sampling points are fairly evenly distributed, as
can be seen in any of Figures 4 to 7. Although small-
scale (local) positive SA is often easy to explain,
small-scale negative SA may be more informative or
interesting. For example, in Figure 4 the high positive
local SA in Denmark and southern Italy could be due
to large country (or regional) di�erences in reporting;
the negative local SA in Ireland cannot be due to this
type of large scale regional e�ect. It could indicate
extreme di�erences in local (county) reporting, but
minimally indicates a phenomenon that should be
investigated.

We have carried out a similar study of cancer
mortalities in central Europe. These are based on an
atlas [15] prepared in a comparable manner to the
present data set. The records represent the years 1983
to 1987, almost a decade later than the western Eu-
ropean mortalities. The two studies agree in showing
strong SA in both one- and two-dimensional
correlograms. However, the two studies do not agree
in the one-dimensional correlogram cluster member-

ship for various cancers, and only partially so for
two-dimensional correlogram clusters. This lack of
agreement suggests that di�erent or identical but
di�erently patterned causal agents are at work in the
two regions. Of the putative factors bringing about
di�erences in mortality, ethnic, genetic, or cultural
di�erences would clearly be cases in point. In a cog-
nate study [32], we have shown that ethnohistorical
a�nities play a signi®cant role in determining pat-
terns of di�erences in cancer mortality in Europe. We
could also obtain the observed results if the two re-
gions di�er markedly in their spatial patterns of re-
porting vital statistics.
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