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Abstract. Meta-analysis is a statistical technique that allows one to combine the results
from multiple studies to glean inferences on the overall importance of various phenomena.
This method can prove to be more informative than common ‘‘vote counting,’’ in which
the number of significant results is compared to the number with nonsignificant results to
determine whether the phenomenon of interest is globally important. While the use of meta-
analysis is widespread in medicine and the social sciences, only recently has it been applied
to ecological questions. We compared the results of parametric confidence limits and ho-
mogeneity statistics commonly obtained through meta-analysis to those obtained from re-
sampling methods to ascertain the robustness of standard meta-analytic techniques. We
found that confidence limits based on bootstrapping methods were wider than standard
confidence limits, implying that resampling estimates are more conservative. In addition,
we found that significance tests based on homogeneity statistics differed occasionally from
results of randomization tests, implying that inferences based solely on chi-square signif-
icance tests may lead to erroneous conclusions. We conclude that resampling methods should
be incorporated in meta-analysis studies, to ensure proper evaluation of main effects in
ecological studies.

Key words: bootstrapping; meta-analysis; randomization tests; resampling statistics vs. standard
methods; statistical techniques.

INTRODUCTION

There is a compelling need for new methods for com-
bining ecological data from different experimental
studies in order to reach general conclusions. While
conventional reviews and syntheses of ecological data
have relied on subjective, narrative methods, or ‘‘vote-
counting’’ approaches, ecologists have recently begun
to explore the use of meta-analysis to address this need.
Meta-analysis is a set of statistical methods that pro-
vides a rigorous framework for the quantitative syn-
thesis of the results of independent studies. The use of
these techniques has become widespread and even rou-
tine in medicine and in the social sciences, but their
potential for integrating ecological data is just begin-
ning to be realized (Arnqvist and Wooster 1995). Re-
cent applications to ecological problems include syn-
theses of the experimental evidence for competition
(Gurevitch et al. 1992), the responses of woody plant
species to elevated CO2 (Curtis 1996), and the effec-
tiveness of crop diversification in deterring herbivorous
insects (Tonhasca and Byrne 1994).

Most researchers use parametric fixed-effects mod-
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els, although random-effects models exist (Raudenbush
1994), and a mixed model has been proposed (Gur-
evitch and Hedges 1993). These procedures are sum-
marized elsewhere (Hedges and Olkin 1985, Cooper
and Hedges 1994). The parametric model used to derive
the effect size d used in meta-analysis relies on the
assumption that the observations in the experimental
and control groups are normally distributed for each
study. The large-sample distribution of d tends to nor-
mality, and the large-sample approximation to the dis-
tribution of the effect size estimator is fairly reliable
for sample sizes that exceed 10 in each of the control
and experimental groups. The large-sample approxi-
mation is likely to be less accurate when sample sizes
are small, when there are large differences in sample
size between the experimental and control groups, and
with very large effect sizes (Hedges and Olkin 1985).
Unfortunately, it is not uncommon for ecological data
to violate each of these conditions (e.g., Gurevitch et
al. 1992). In addition, the test statistic used to assess
the homogeneity of the effect sizes among studies, Q,
is approximately chi-square distributed when the above
assumptions of normality are met. If they are violated,
the conventional tests of homogeneity may be flawed
(Hedges and Olkin 1985).

One alternative to traditional parametric and non-



Thursday Sep 17 09:12 AM
Allen Press • DTPro

ecol d78 502 Mp 1278
File # 03sc

1278 Ecology, Vol. 78, No. 4REPORTS

TABLE 1. Equations used in the calculation of mean effect sizes and homogeneity components
in meta-analysis. Symbols in equations follow Gurevitch and Hedges (1993) and are as
follows: Xij

C 5 mean of control group, Xij
E 5 mean of the experimental group, sij 5 pooled

standard deviation of the control and experimental groups, J 5 correction term for bias
because of small sample size, w 5 weighting for each study [see Methods: Calculations for
parametric and nonparametric weighting schemes].

Statistic Symbol Equation

Study effect size dij
2 2E CX 2 Xij ij J

sij

Class effect size di1
ki

w dO ij ij
5j 1

ki

wO ij
5j 1

Grand mean effect size d11
m ki

w dO O ij ij
5 5i 1 j 1

m ki

wO O ij
5 5i 1 j 1

Homogeneity within classes QW
m ki

21w (d 2 d )O O ij ij i
5 5i 1 j 1

Homogeneity between classes QB
m ki

21 11w (d 2 d )O O ij i
5 5i 1 j 1

parametric statistical tests is the use of resampling
methods. These computer-intensive techniques are now
beginning to gain wider application in single-study
analyses in ecology and evolution (Manly 1991, Crow-
ley 1992). Such methods have not previously been ap-
plied to meta-analysis. Resampling methods test the
significance of a statistic by generating a distribution
of that statistic by permuting the data many times, each
time recalculating the statistic. By comparing the orig-
inal statistic to this generated distribution, a signifi-
cance level can be determined (Kempthorne and Doer-
fler 1969, Manly 1991). Resampling methods such as
the bootstrap can also be used to estimate confidence
limits for statistics. Because they generate their own
distributions, resampling methods are free from the dis-
tribution assumptions of parametric tests, and, in many
cases, may be more powerful than conventional non-
parametric ranking approaches (Manly 1991, Adams
and Anthony 1996).

Despite their growing popularity in primary analy-
ses, resampling and randomization techniques have not
been used in meta-analysis in any field, and their ap-
plication to this secondary level of analysis raises ques-
tions that have not been addressed before by statisti-
cians. Because ecological data may violate some of the
assumptions for common meta-analysis statistics, we
propose an approach by which resampling methods can
be applied to the statistical tests of significance and to
the calculation of confidence limits in meta-analysis.
We then compare the results of these analyses to the

results from standard meta-analytic methods for three
ecological data sets.

METHODS

Calculations

In conventional meta-analysis, effect sizes are cal-
culated from the means, sample sizes, and standard
deviations of the experimental and control groups in
each study (Hedges and Olkin 1985), and are then com-
bined to obtain an estimate of the mean effect size for
each class, di1, as well as the grand mean effect size
for all studies, d11. It is often of interest to test whether
classes of studies differ in their effect sizes. A ho-
mogeneity statistic, QB, can be used to assess whether
the classes of studies differ significantly from one an-
other, and the statistic QW can be used to test for within-
class homogeneity (see Table 1 for formulas). This
method of determining within- and between-class ho-
mogeneity is analogous to the partitioning of variance
into within- and between-group components in an anal-
ysis of variance (see Gurevitch and Hedges [1993] for
a more detailed explanation).

Studies are typically weighted by an estimate of the
precision of the effect size, based on the reasonable
assumption that more-precise studies (e.g., those with
larger sample sizes) should be weighted more heavily
than those that are less precise. The parametric weights
usually used are inversely proportional to the estimated
sampling variance, and are calculated as wij 5 1/vij,
where
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E C 2N 1 N dij ij ijv 5 1ij E C E CN N 2(N 1 N )ij ij ij ij

(Hedges and Olkin 1985). NE and NC are the experi-
mental and control group sample sizes, and dij is the
effect size for that study. This weighting minimizes the
variance of di1, and is the most precise weighting es-
timate when the assumptions based on large-sample
theory are satisfied. An alternative weighting that
makes fewer assumptions, but still incorporates the de-
sired property of counting larger studies more heavily
than small ones is

E CN Nij ijw 5ij E CN 1 Nij ij

(Hedges and Olkin 1985:110). We used this weighting
for all resampling tests to reduce our reliance on para-
metric assumptions. This choice of weights will result
in slightly less efficient estimates than the parametric
weights when all of the assumptions for the parametric
models are met, but the resampling analysis will be
valid even when the parametric analysis is not.

Data

We compared the results of conventional meta-anal-
ysis to those obtained from resampling techniques for
three ecological data sets. The first data set (Gurevitch
and Hedges 1993) contained 43 experimental field stud-
ies of competition among plants, grouped into three
classes according to system: terrestrial (19 studies),
lentic (2 studies), and marine (22 studies). The re-
sponses to competitors were expressed as either an in-
crease in the number of individuals or an increase in
the size of individuals (i.e., growth). The second data
set (Gurevitch et al. 1992) included 214 studies on the
effect of competition on biomass, grouped into five
classes: primary producers (74 studies), deposit feeders
(3 studies), filter feeders (3 studies), herbivores (112
studies), and carnivores (22 studies). The third data set
(Curtis 1996) examined the responses of plants from
69 studies to elevated atmospheric CO2 levels, and in-
cluded consideration of the effect of different stress
(nutrient stress, 7 studies; general stress, 8 studies; un-
stressed, 54 studies), duration of exposure to elevated
CO2 (,50 d, 7 studies; 50–100 d, 19 studies; 101 d–
1 yr, 21 studies; .1 yr, 6 studies), different experi-
mental conditions (greenhouse, 12 studies; growth
chamber, 12 studies; open-top chamber, 19 studies), and
different pot sizes (small, 4 studies; large, 5 studies;
in-ground, 10 studies). In all three data sets, several
studies from each class had sample sizes ,10, with the
exception of deposit feeders (Gurevitch et al. 1992).

Statistics

All analyses were carried out using MetaWin (Ro-
senberg et al. 1997). For each data set, we calculated

mean effect sizes and 95% confidence limits for each
class using parametric, fixed-effects model and mixed-
effects model meta-analytic techniques. We also cal-
culated the between-class homogeneity (QB) for each
data set and tested this against a chi-square distribution
to determine if classes differed significantly from one
another. We then calculated bootstrap confidence limits
for the mean effect sizes for each class and for the
grand mean effect sizes for comparison.

We first calculated bootstrap confidence limits for
the mean class effect sizes using the conventional meth-
od, the percentile bootstrap (Efron 1979). For each
class, we chose i studies with replacement and calcu-
lated a weighted mean effect size. We repeated this
process 4999 times, ordered the output values sequen-
tially, and chose the lowest and highest 2.5% values
as our bootstrap confidence limits (Manly 1991, Dixon
1993). Classes whose cumulative effect size confidence
limits contained zero were judged not to be signifi-
cantly different from zero. One problem with percentile
bootstrap confidence limits however, is that as sample
sizes decrease, the lengths of percentile bootstrap con-
fidence limits tend to become underestimated, because
percentile bootstraps assume that the bootstrap distri-
bution is centered around the observed value (Efron
1987, Dixon 1993). Bias-corrected percentile bootstrap
confidence limits have been suggested to correct for
distributions when .50% of the bootstrap replicates
are larger or smaller than the observed value, which
happens often with small samples (Efron 1987). As
some of our classes contained a small numbers of stud-
ies, we also calculated the bias-corrected percentile
bootstraps for comparison by calculating the normal
cumulative distribution function for twice the probit
transformation of the fraction of bootstrap replicates
smaller than the observed value 6 1.96 (see Dixon
1993).

For all three data sets, we examined whether classes
within each data set differed significantly from one
another using both chi-square tests for between-class
homogeneity (QB) and randomization tests for com-
parison. First we calculated the QB for each original
data set using standard meta-analytic methods (see Ta-
ble 1). We then conducted a randomization test by ran-
domly re-assigning studies to classes, each time cal-
culating a new QB. We repeated this procedure 4999
times to generate a distribution of QB values. The sig-
nificance level of QB is the percentage of times that QB

generated from the randomized replicates was more
extreme than the QB calculated from the original data.
One question of interest when using resampling tech-
niques is how many iterations are necessary. To ex-
amine this we performed 30 meta-analyses on the Gur-
evitch and Hedges (1993) data set with 100, 250, 500,
1000, 2500, 5000, 7500, 10 000, 15 000, and 20 000
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TABLE 2. Cumulative effect sizes and confidence limits based on parametric meta-analytic and resampling methods: di1 5
mean effect size for each class; d11 5 grand mean effect size for all studies.

Class N

di1

Fixed-effect
model

Mixed-effect
model

95% CL

Fixed-effect model Mixed-effect model

Gurevitch et al. 1992
Primary producer
Deposit feeder
Filter feeder
Herbivore
Carnivore
Total d11

74
3
3

112
22

214

0.34
0.06
1.26
1.14
0.25
0.80

0.69
0.12
1.46
0.96
0.29
0.78

0.29–0.39
20.08–0.18

0.62–1.90
1.10–1.18
0.11–0.38
0.77–0.83

20.05–0.63
20.71–0.96

0.41–2.52
0.81–1.13

20.05–0.21
0.72–0.84

Gurevitch and Hedges 1993
Terrestrial organisms
Lentic organisms
Marine organisms
Total d11

19
2

22
43

1.141
4.107
0.798
1.01

1.09
4.12
0.70
0.94

0.92–1.37
2.37–5.84
0.56–1.04
0.85–1.17

0.75–1.43
2.26–5.98
0.37–1.03
0.71–1.17

Curtis 1996
Unstressed plant
Nutrient-stressed plant
Generally stressed plant
Total d11

54
7
8

69

1.08
0.68
1.66
1.09

1.47
0.76
1.80
1.42

0.94–1.25
0.29–1.09
1.15–2.17
0.95–1.23

1.16–1.79
20.07–1.59

0.96–2.65
1.12–1.56

replications, and calculated the variance at each of
these levels to determine when it leveled off.

RESULTS

Confidence limits

For most classes, bootstrap confidence limits from
the mixed-effects model were greater than those from
the fixed-effects model, and bootstrap confidence limits
tended to be slightly larger than the parametric confi-
dence limits, suggesting that the resampling approach
may be more conservative (Table 2). We also found
that classes with a larger number of studies had more
variation in their response, and thus tended to have
wider percentile bootstrap confidence limits (Table 2).
In general, confidence limits from the mixed-effects
model were more similar to the bootstrap confidence
limits than were the confidence limits from the fixed-
effects model. For lentic organisms, with a sample size
of two studies, we found narrower percentile bootstrap
confidence limits than parametric confidence limits. In
this case however, only three outcomes from resam-
pling were possible: the smaller effect size being se-
lected twice, each effect size being selected once, or
the larger effect size being selected twice. These events
occur in a 1:2:1 ratio, and the lower and upper per-
centile bootstrap confidence limits each represent one
effect size being selected twice. Bias-corrected per-
centile bootstrap confidence limits were usually slight-
ly wider than percentile bootstrap confidence limits
(Table 2). In several cases we found slightly wider
percentile bootstrap confidence limits. Three of these
cases (deposit feeders, filter feeders, and lentic organ-

isms) had extremely small sample sizes (3, 3, and 2
respectively).

Mean effect sizes of all classes in the three studies
were determined to be significantly different from zero
using fixed-effects parametric confidence limits, with
the exception of deposit feeders, where there was no
difference in response to competition between exper-
imental and control treatments. With the mixed-effects
model, mean effect sizes for primary producers, car-
nivores, and nutrient-stressed organisms were not sig-
nificantly different from zero. In one instance, primary
producers, the effect size was considered to be different
from zero using standard confidence limits, but not
different from zero using bootstrap confidence limits,
implying that, in some instances, confidence limits de-
rived from standard methods may be less conservative
in establishing the significance of small to moderate
effects.

Homogeneity statistics

With the fixed-effects model, parametric tests of be-
tween-class homogeneity indicated highly significant
differences between classes in all cases (Table 3). Re-
sults from the mixed-effects model were similar, except
for stress and pot size, in which no significant differ-
ences among classes were found (Table 3). In general,
results from randomization tests agree with those from
the parametric tests. However, in two instances, stress
level and pot size, chi-square tests from the fixed-ef-
fects model resulted in a significant difference between
classes while randomization tests did not. In these
cases, it is difficult to determine whether the underlying
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TABLE 2. Continued.

Bootstrap CL

Fixed-effect model Mixed-effect model

Bias-corrected CL

Fixed-effect model Mixed-effect model

20.085–0.589
20.292–0.775

0.158–3.426
0.769–1.528
0.276–0.722
0.534–1.086

20.082–0.659
20.292–0.775

0.158–3.426
0.769–1.209

20.066–0.722
0.607–0.955

20.080–0.592
20.292–0.442

0.158–2.805
0.774–1.530
0.274–0.710
0.534–1.088

20.529–0.901
20.292–0.775

0.158–2.805
0.774–1.530
0.274–0.710
0.596–0.941

0.907–1.383
3.696–4.674
0.376–1.327
0.854–1.371

0.786–1.341
3.696–4.674
0.308–1.112
0.764–1.328

0.894–1.378
3.696–4.674
0.407–1.362
0.857–1.380

0.807–1.370
3.696–4.674
0.407–1.229
0.758–1.325

0.826–1.490
0.455–1.091
0.831–2.624
0.855–1.393

1.178–1.812
0.413–1.142
0.829–2.811
1.149–1.721

0.809–1.474
0.452–1.090
0.839–2.644
0.855–1.398

1.213–1.834
0.424–1.143
0.863–2.869
1.145–1.719

conditions of meta-analysis are being violated. How-
ever, this discrepancy suggests that conclusions based
on resampling methods may be more conservative.

Randomization tests at different levels of replication
showed that the variance around the significance level
of QB dropped substantially by 2500 and 5000 repli-
cations and approached zero as the number of repli-
cations increased, implying that QB is a consistent es-
timator of the true difference between classes. Because
of this asymptotic decrease in QB past 2500 replica-
tions, we recommend that, for meta-analysis, at least
2500 replications be used in such randomization tests.

DISCUSSION

The purpose of meta-analysis is to provide research-
ers with a statistical tool to summarize, synthesize, and
evaluate independent research studies in order to reach
general conclusions. This approach is more powerful,
more informative, more accurate, and less likely to be
biased than simple narrative reviews and ‘‘vote count-
ing’’ (e.g., see Hedges and Olkin 1985, Gurevitch et
al. 1992, Arnqvist and Wooster 1995). Attempts to em-
ploy meta-analysis in ecological research bring into
sharper focus a number of as-yet-unresolved issues and
problems in synthesizing and summarizing the current
state of knowledge in an area. These issues include
publication bias (the tendency for journals to favor pub-
lication of papers with statistically significant results),
research bias (the tendency to choose subjects for re-
search where significant results are anticipated; J. Gur-
evitch, unpublished manuscript), non-independence
and autocorrelation among studies, identifying the best
metrics for meta-analysis, how to deal with studies of

varying quality, and other issues (Cooper and Hedges
1994).

One possible limitation of conventional parametric
meta-analysis that has generally been overlooked is that
if the distributional assumptions are not met, estimates
of mean effect sizes and their confidence limits may
not be accurate, and tests for the differences among
classes may be unreliable. It is not known how robust
the statistics of meta-analysis are to violations of these
assumptions.

The general agreement between our results and those
obtained using parametric calculations is reassuring in
that it suggests either that ecological data commonly
meet the assumptions of meta-analytic techniques, or
that the statistics of parametric meta-analysis may be
fairly robust to violations of these assumptions. Since
the results from parametric meta-analysis and our re-
sampling statistics were similar, one might ask, ‘‘is this
really necessary?’’ In several instances the results of
our resampling methods differed from those found with
parametric techniques, resulting in different conclu-
sions. Therefore, it may be reasonable to use more
conservative approaches that do not rely on meeting
distributional assumptions. This can be accomplished
by incorporating bootstrap confidence limits in meta-
analysis to help determine the magnitude of mean effect
sizes, as well as using randomization tests to assess the
between-class homogeneity.

Philosophically, we believe that it is important to be
conscious of the underlying assumptions of any statis-
tical technique, and that data subjected to meta-analysis
may sometimes not meet the assumptions of common
tests. Researchers performing meta-analysis are syn-
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TABLE 3. Homogeneity assessments based on chi-square and randomization tests. QB 5 between-class homogeneity statistic;
NS 5 nonsignficant.

Study Model Group QB

Chi-square
P

Random-
ization P

Gurevitch et al. 1992 Fixed-effect
Mixed-effect

All systems
All systems

793.430
17.510

0.0001
0.0015

0.0358
0.0766NS

Gurevitch and Hedges 1993 Fixed-effect
Mixed-effect

All classes
All classes

16.497
13.980

0.0001
0.0001

0.0006
0.0028

Curtis 1996 Fixed-effect
Mixed-effect

Stress
Stress

8.612
3.290

0.0135
0.1926NS

0.3494NS

0.2180NS

Curtis 1996 Fixed-effect
Mixed-effect

Duration
Duration

47.949
30.939

0.0001
0.0001

0.0034
0.0008

Curtis 1996 Fixed-effect
Mixed-effect

Experiment type
Experiment type

24.413
19.641

0.0001
0.0001

0.0242
0.0004

Curtis 1996 Fixed-effect
Mixed-effect

Pot size
Pot size

9.353
1.333

0.0093
0.5130NS

0.6994NS

0.7818NS

thesizing previously published studies, which may not
provide all the necessary statistical information to as-
sess whether assumptions are met. In many cases it is
difficult to obtain even the basic statistics from pub-
lished studies (Gurevitch et al. 1992). It is not uni-
maginable that other ecological data may violate these
assumptions far more severely than did the data we
analyzed, resulting in greater discrepancies between
parametric and resampling results. Thus, distribution-
free resampling methods may often be preferable for
ecological meta-analysis.

An additional advantage of resampling methods in
meta-analysis is that, unlike parametric methods, they
do not require computation of the standard errors, used
to calculate weights, of the individual effect size es-
timates. The randomization strategy advanced here
uses weights that are similar but not identical to the
parametric weights. When published research results
fail to include the basic statistical information (in par-
ticular, the standard deviations of the means of the
experimental and control group responses) needed to
compute the parametric standard error of the effect size,
they would ordinarily have to be omitted from any
meta-analysis of the literature. The use of the approach
suggested here would therefore potentially permit the
inclusion of a larger number of studies in a meta-anal-
ysis than will the use of standard parametric methods.
This is particularly true where, rather than d, an effect
size is used that does not require an estimate of the
standard deviation, such as the response ratio (the ratio
of the means of the experimental and control groups;
see Rosenberg et al. 1997; L. V. Hedges, P. Curtis and
J. Gurevitch, unpublished manuscript). In ecology,
where reporting of statistics is uneven, this may be a
major advantage.

As more and more experimental studies are per-
formed in ecology, the need for synthesizing infor-
mation becomes increasingly important. We encourage
researchers to explore the use of distribution-free re-

sampling methods in conducting meta-analyses for
both confidence-interval estimation and hypothesis
testing, particularly where there is reason to believe
that their data may not meet the assumptions of para-
metric methods.
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