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A large number of methods for the analysis of the spatial structure of natural
phenomena (for example, the clumping or overdispersion of tree stems, the positions
of veins of ore in a rock formation, the arrangement of habitat patches in a
landscape, and so on) have been developed in a wide range of scientific fields. This
paper reviews many of the methods and describes the relationships among them, both
mathematically, using the cross-product as a unifying principle, and conceptually,
based on the form of a moving window or template used in calculation. The
relationships among these methods suggest that while no single method can reveal all
the important characteristics of spatial data, the results of different analyses are not
expected to be completely independent of each other.
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Most systems in the natural world are not spatially
homogeneous but exhibit some kind of spatial struc-
ture. Ecologists and other scientists have become both
increasingly aware of the importance of the spatial
components of the phenomena they study, and increas-
ingly sophisticated in their ability to quantify it and to
include it in their understanding of ecological processes
(Legendre and Legendre 1998, Liebhold and Gurevitch
2002). Partly because the study of spatial structure has
arisen more-or-less independently in various branches
of science (e.g., geology, geography, ecology, hydrol-
ogy, engineering) and with somewhat different motiva-
tions and for different applications, a great variety of
methods have been proposed in the past decades (Perry
et al. 2002).

The motivations that have given rise to the develop-
ment of these methods include the estimation of ore

reserves (mining), the detection of the clumping of
individual organisms (ecology), and the search for uni-
fying concepts of the spatial structure of natural ob-
jects. The wide range of methods also reflects the
diversity of data that are used for analysis: the mapped
locations of objects in a plane (point pattern process),
mapped objects with an associated characteristic (a
marked point process); spatially dispersed samples ei-
ther regularly or irregularly arranged; transects of con-
tiguous units recording the abundances of different
species; grids of units, each with quantitative or qualita-
tive characteristic; and so on (see Perry et al. 2002). The
methods can therefore by classified by the kinds of data
to which they can be applied. For example, some can
only be applied to data that are from contiguous sam-
pling units; some apply to very sparse samples from an
area; some require a complete map of all the points in
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a plane; and others can be applied to the characteristics
of a very incomplete sample of individuals.

Within the broad range of the methods that will be
discussed here, there are some concepts and properties
that are relevant to almost all of them. One of these is
spatial autocorrelation, which arises when the process
generating the variable of interest is such that the
values of samples that are close together have a ten-
dency to be more similar (for positive autocorrelation)
than those randomly placed in the study area. Processes
such as growth and reproduction generate spatial auto-
correlation in species and so autocorrelation is a gen-
eral property of ecological data. As we will describe
below, there are a number of different ways of measur-
ing autocorrelation and how its strength varies with
distance. A second general concept is isotropy, which is
the property that the characteristics of the pattern are
the same in any direction; whereas anisotropy refers to
the case where the characteristics are different, depend-
ing on direction (for example, oblong rather than circu-
lar patches due to wind or water flow). A related
concept is that of stationarity, which is that the under-
lying characteristics of the pattern, such as the mean
and variance of a variable, are constant over the area
under study (Legendre and Legendre 1998). Most of the
methods are affected by the edges of the study area and
the fact that the pattern beyond the edge is unknown.
The correction of this edge effect in some methods has
received considerable attention (see Cressie 1991).

Another factor that contributes to the breadth of
methods is the relationship of a particular method to
tests of statistical significance. Some methods have been
specifically designed to provide strict statistical tests,
whereas others are meant to be descriptive, or purely
exploratory, providing the opportunity for the develop-
ment of hypotheses concerning the relationship between
spatial pattern and biological processes which can then
be tested in other ways. In some cases, where the same
data are used many times in the same analysis, correct
statistical tests may be unattainable. On the other hand,
the characteristics of the spatial structure revealed by
these analyses may be included in the evaluation or
adjustment of standard statistical test, which might
otherwise be rendered invalid by the spatial autocorre-
lation in the data (Legendre et al. 2002). In some
instances, the evaluation of the statistical significance of
detected characteristics can be assessed using random-
ization or Monte Carlo techniques (cf. Manly 1997).

The understanding that the characteristics may vary
in space leads to the distinction between local spatial
statistics that quantify the pattern relative to particular
nearby locations, as opposed to global spatial statistics
that summarize the pattern’s characteristics over the
entire study area. A large proportion of the methods
that will be discussed here can exist in two versions, one
local and one global.

This paper will describe the relationships, conceptual
and mathematical, among the wide range of spatial
statistics available to analyze spatial pattern. We do not
intend to provide a complete review of all methods,
their purposes and interpretation; that would require a
work of text-book length. We cannot even include all
the general approaches that have been or can be used,
but we will try to provide as broad a range as possible.
For example, many methods that can deal with univari-
ate and bivariate data also have extensions for multi-
variate data. Usually, these multivariate extensions will
not be discussed explicitly in order to limit the length of
this description. Similarly, extensions of methods to
three dimensions will not be fully described and
discussed.

Our aim, here, is to show different ways in which the
methods relate to each other, which we can show either
informally based on several of the methods’ conceptual
characteristics or formally by showing mathematical
equivalency or similarity. Relationships can be based
on theoretical grounds, empirical calculations, or con-
ceptual affinity. Equations will be denoted by numbers
in brackets, as is customary. Less formal relationships
between methods, where described in the text, will be
indicated by ‘‘relationship’’ numbers in curly brackets,
thus: {R0}. Some of the methods are related by the
motivation for their use, some by the conceptual bases
on which they were developed, and some have close
mathematical relationships. We present some of the
relationships formally, following the example of Getis’
(1991) cross-product approach to the unification of
these statistical methods. That approach expresses each
technique as the sum of the products of the data and
the values of a weighting function particular to the
method. We provide a conceptual analog of the cross-
product approach to unification by considering the
characteristics of the ‘‘window’’ or ‘‘template’’ used in
calculation for each method. Finally, we will illustrate
our perception of the relationships among the methods
pictorially with an ordination diagram based on the
features of those window templates and other charac-
teristics of the methods.

Methods

Variance:mean ratio

The simplest and oldest measures of ‘‘spatial pattern’’,
and the ones most frequently cited in introductory
ecology textbooks, are based on the counts of individu-
als in some kind of sampling units such as quadrats. In
many instances, the aim is to distinguish among three
categories of spatial point patterns: random; underdis-
persed or clumped; and overdispersed or ‘‘regular’’, as
illustrated in many textbooks (e.g. Dale 1999: Fig. 1.9).
Many of these measures are based on the relationship
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of the sample mean to the sample variance for the
entire study area.

Given a set of n variates xi, representing the counts
of individuals in sampling units, the mean is the first
moment, m1:

m1= �
n

i=1

xi/n (1)

The variance, s2 is:

s2=
� �

n

i=1

xi
2−nm1

2��(n−1). (2)

For large sample size, the divisor is sometimes replaced
by n. Using the notation of the second moment:

s2�m2−m1
2 where m2= �

n

i=1

xi
2/n. (3)

The simple variance to mean ratio is:

D=s2/m1. (4)

It is sometimes suggested that as a statistical test of
randomness, (n−1)D can be compared to the �2-distri-
bution on n−1 degrees of freedom because if the
points are random, the counts come from a Poisson
distribution for which the variance equals the mean. In
the presence of spatial correlation, the sample variance
is not an unbiased estimator of the variance, but the
sample mean is an unbiased estimator of the mean.
While it is true that if the points are randomly ar-
ranged, the distribution is Poisson and if the distribu-
tion is Poisson, then the variance equals the mean, the
reverse is not true. It is possible to have a distribution
that is not Poisson for which the variance equals the
mean (Hurlbert 1990) and it is possible for the distribu-
tion to be Poisson when the points are not randomly
arranged, at least for one size of quadrat (Dale 1999).

Nevertheless, a number of indices of spatial pattern
have been based on this ratio. For example, David and
Moore’s index of crowding, CDM, is:

CDM=s2/m1−1=D−1. (David and Moore 1954).
(5)

A closely related index of the points’ aggregation is
Morisita’s I�, (Morisita 1959) where N objects are
distributed among the n sampling units (N=� xi):

Is=
N

N−1
� s2

m1

+m1−1
n�

m1=
N

m1(N−1)
(C+m1)

�
D
m1

+1 (Hurlbert 1990). (6)

The perceived dispersion of a point pattern may
depend greatly on the scale of the study and the size of
the sample unit used. If a single grove of trees is
studied, the stems may be seen as overdispersed, but
when several groves are included, the trees may appear
to be clumped (Dale 1999: Fig. 1.10). Also, in many
applications, the principal interest may not be merely to
determine which of the three categories (random, un-
der- and overdispersed) a point pattern falls for a
particular scale of study. Frequently, if the points are
overdispersed we may want to know the average spac-
ing between the points. If the points are underdispersed,
forming clumps of higher density separated by gaps of
lower density, we may want to know the average sizes
of the patches and gaps and whether there is a single
scale of clumping or several. For those kinds of ques-
tions, the spatial locations of the sampling units must
be somehow included as information in the analysis.

Block and quadrat variance methods

In the next family of methods, the spatial locations of
the sample units are included in the analysis and it
requires that the data be collected as a complete census
in strings or grids of contiguous quadrats. The data can
be counts of individuals (or such) or records of density
such as estimates of cover. We will begin with methods
that apply to data collected in one-dimensional strings.
These can be viewed as extensions of the variance:mean
ratio by using a range of sizes of units on which the
values are calculated and by calculating the variance
not based on all units at once but only on pairs of
adjacent units.

‘‘Lacunarity analysis’’ uses the mean and variances of
groupings of r adjacent sampling units (whether the
data are counts or density measures), based on the first
and second moments for windows of size r (Plotnick et
al. 1993, 1996). This way of calculating lacunarity can
be thought of as a one-part gliding window that in-
cludes r units for r=1, r=2, and so on. It is placed at
the first possible position of the string of data and the
total in that window is calculated and recorded to
contribute to the sum and the sum of squares of the
totals. The window is then moved one position along
and the process is repeated (Fig. 1). This progression is
continued until the last possible position for the win-
dow is reached.

The measure of lacunarity for windows of size r is:

�(r)=m2(r)/(m1(r))2. (7)

This measure is closely related to the variance:mean
ratio and to Morisita’s index because

�(r)= (m2(r)−m1(r)2+m1(r)2)/(m1(r))2

�s2(r)/m1(r)2+1. (8)
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Fig. 1. The calculation of lacunarity for a string of contiguous
quadrats: the smaller squares are the quadrats and the larger
rectangle is a moving window of size 3. The mean and
variance is calculated from the values at each possible position
of the window and for a range of window sizes.

between the two parts of the template. Elsewhere, we
will use ‘‘d’’ where only the distance is affected.The
variance in TTLQV is:

V2(b)= �
n+1−2b

i=1

� �
i+b−1

j=1

xj− �
i+2b−1

j= i+b

xj

�2�
2b(n+1−2b).

(9)

This variance is calculated for a range of block sizes
and when plotted, peaks in the variance are interpreted
as being indicative of scales of pattern in the data (Hill
1973, Dale 1999). This method is often used with
density data, but it can be used for presence/absence
data, or for counts.

An alternative to having a two-part window of which
the window size increases is to have a two-part template
for which only the spacing changes with each half
containing only a single original sample unit; this
method is known as paired quadrat variance, PQV
(Ludwig and Goodall 1978):

Two-part window: changing size (TTLQV)

� changing spacing (PQV). {R2}

Its equation is:

Vp(d)= �
n−d

i=1

(xi−xi+d)2/2(n−d). (10)

As with TTLQV, peaks in the plot of Vp as a function
of d are interpreted as indicating scales of pattern in the
data (cf. Ludwig and Reynolds 1988). ver Hoef et al.
(1993) provide an equation that shows a close, but not
simple, relationship between TTLQV and PQV:

V2(b)=Vp(b)+
1
b

�
b−1

i=1

{2(i−b)Vp(i)+ (b− i)

×[Vp(b+ i)+Vp(b− i)]}. (11)

Both TTQLV and PQV can be extended to a three-
part window form, called ‘‘three term local quadrat
variance’’, 3TLQV (Hill 1973), and ‘‘triplet quadrat
variance’’, tQV (Dale 1999):

Two-part window (TTLQV, PQV)

� Three-part window (3TLQV, tQV). {R3}

The equation for 3TLQV is:

V3(b)= �
n+1−3b

i=1

� �
i+b−1

j=1

xj−2 �
i+2b−1

j= i+b

xj+ �
i+3b−1

j= i+2b

xj

�2�
8b(n+1−3b). (12)

A major difference, however, is that lacunarity is usu-
ally calculated on a moving window, so that the same
datum may be counted in several overlapping windows;
whereas the other measures are more usually applied to
data from non-overlapping sample units.

The relationships among this first grouping of meth-
ods are illustrated schematically in Fig. 2.

The next methods can be thought of as following
procedures similar to that used in lacunarity analysis,
except that the template is a window consisting of two
parts rather than one, and the variance is calculated
from the differences between the two halves of the
template:

One-part window (lacunarity) � Two-part windows.
{R1}

The first of these is called ‘‘two term local quadrat
variance’’, TTLQV (Hill 1973), in which, as in lacunar-
ity, the window changes size with increasing values of
b. We use ‘‘b’’ here, rather than ‘‘r’’ which we used for
the window size in lacunarity, because the block size
affects both the size of the window and the distance

Fig. 2. The relationships among the methods that employ the
variance to mean ratio. The numbers in square brackets refer
to equations.
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Fig. 3. The relationships among
some methods that employ a
moving window and calculate a
variance. The numbers in square
brackets refer to equations and
those in curly brackets refer to
less formal relationships described
in the text.

For tQV, it is:

Vt(d)= �
n−2d

i=1

(xi−2xi+d+xi+2d)2/4(n−2d). (13)

In both these methods, peaks in the variance are con-
sidered to be indicative of scales of pattern in the data,
as in the previous two methods. The two-part window
methods can filter out the addition of a constant and
the three-part window methods can filter out a linear
trend. Therefore, 3TLQV and tQV are less sensitive to
trends in the data (Dale 1999).

Measures of spatial autocorrelation

The concepts of autocorrelation and autocovariance are
derived from the familiar statistical concepts of covari-
ance and correlation. For two variables, x and y, their
covariance is related to the expected value of their
product:

Cov(x, y)=E(x−E(x))×E(y−E(y))

=E(xy)−E(x)×E(y). (14)

Their correlation is:

�(x, y)=
Cov(x, y)

�Var(x)Var(y)
. (15)

Autocovariance and autocorrelation are simply mea-
sures of the covariance and correlation of the values of
a single variable for all pairs of points separated by a
given spatial lag.

The quadrat variance methods, just described, come
from quantitative plant ecology and spatial autocorre-
lation functions from statistical geography. In geostatis-

tics similar techniques have been developed under dif-
ferent names (Matheron 1962, Rossi et al. 1992). One
of the most commonly used geostatistical techniques is
the calculation of a sample variogram, which quantifies
autocorrelation over a range of lags, d, by estimating
what is sometimes called the semivariance, �(d). For the
general case, where dij is the distance between the two
samples, i and j with values xi and xj (whether counts or
other kind of measure), let wij(d) be a distance indicator
function or an element of a distance weight matrix: it is
1 if dij is in distance class d and 0 otherwise. W(d) is the
sum of the wij(d). The omnidirectional sample vari-
ogram, which is an estimate of �(d), is calculated as:

�̂(d)=� � wij(d)(xi−xj)
2/2W(d). (16)

For a transect of n contiguous or equally spaced
quadrats, this is the same as:

�̂(d)= �
n−d

i=1

(xi−xi+d)2/2(n−d). (17)

Under these conditions, the latter is identical to the
calculation for PQV:

Equation [10] (PQV) � eq. [17] (Sample Variogram).

{R4}

One conceptual difference is that PQV was initially
designed for strings of contiguous quadrats (Ludwig
and Goodall 1978), whereas the variogram is often used
for spaced samples (cf. Rossi et al. 1992). Figure 3 gives
a schematic illustration of the relationships among the
group of methods just described.
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Other measures of autocorrelation are also used, for
example (in the same notation) Moran’s index of auto-
correlation (Moran 1950) is:

I(d)=
� �wij(d)(xi− x̄)(xj− x̄)/W(d)

� (xi− x̄)2/n
(18)

(Legendre and Legendre 1998). Geary’s measure (Geary
1954) is:

c(d)=
� � wij(d)(xi−xj)

2/2W(d)

� (xi− x̄)2/(n−1)
. (19)

Only the denominator of this formula makes it different
from the equation for the variogram, (16), and there-
fore there is also a close relationship with the quadrat
method called PQV.

There are also clear and direct relationships between
measures of autocorrelation and autocovariance. Let
C(d) be the autocovariance for units at distance d:

C(d)=E[(xi−E(xi))(xi+d−E(xi+d))], (20)

which, for equally spaced data on a transect, can be
estimated by

C� (d)=
1

n−d
�

n−d

i=1

(xi− x̄)(xi+d− x̄). (21)

Clearly, there is a close relationship between Moran’s
measure and the sample covariance, and between
Geary’s measure and some form of the sample vari-
ogram {R5}. Note that:

C(0)=Var(x)=�2. (22)

Then, assuming second order stationarity (mean and
variance of the random function describing the underly-
ing process are constant with respect location):

�(d)=C(0)−C(d) (ver Hoef et al. 1993). (23)

Let �(d) be the autocorrelation at distance d, assuming
the same stationarity:

�(d)=C(d)/C(0)=1−�(d)/C(0)

(Legendre and Legendre 1998) (24)

and for Geary’s c:

E(c(d))=1−C(d)/C(0)=1−�(d)

(Legendre and Legendre 1998). (25)

Neighbour networks

The above measures of autocorrelation such as Geary’s
and Moran’s can be estimated using not only physical
distance, but also for the values, counts or other mea-
sures, at pairs of points that are defined as neighbours
by a network of lines joining them:

Autocorrelation with physical distance

�autocorrelation on network. {R6}

There are a number of such networks to choose from,
the nearest neighbours, the kth nearest neighbours, the
Gabriel graph (Gabriel and Sokal 1969), and so on
(Fig. 4). Of particular interest for our purposes, here, is
the Delaunay network (Fig. 4c); it is formed by the rule
that the lines of the triangle ABC are in the network
provided that the circle circumscribing the triangle

Fig. 4. Three examples of neighbour networks: the nearest
neighbour network, the Gabriel graph, and the Delaunay
triangulation.
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Fig. 5. The relationships among
methods that focus on
autocorrelation and autocovariance.
The numbers in square brackets
refer to equations and those in curly
brackets refer to less formal
relationships described in the text.

ABC (its ‘‘circumcircle’’) contains no other points. It is
the mathematical dual of the familiar Dirichlet (or
Thiessen or Voronoi) tesselation (Okabe et al. 1992).
For a good discussion of these networks, see Legendre
and Legendre (1998).

Figure 5 summarizes some of the relationships
among the methods described in this section.

Spectral analysis and related techniques

Spectral analysis is a technique that examines periodic-
ity in the spatial pattern of density data by fitting sine
and cosine functions to the data and determines which
frequencies or wavelengths best fit the data (Ripley
1978). Usually the data to which this analysis is applied
are measures of some kind in continuous or evenly
spaced series. One technique for this kind of analysis is
the Fourier transform, which decomposes the ‘‘signal’’
into combinations of sine waves of various frequencies
and positions (see Legendre and Legendre 1998). This
method has been applied to two-dimensional ecological
data by Renshaw and Ford (1984). Although originally
developed for the analysis of continuous signals, spec-
tral analysis can also be applied to point pattern data;
see Mugglestone and Renshaw (1996).

A closely related technique (one of a family of trans-
forms) is the use of the Walsh transform which decom-
poses the signal into combinations of square waves of
various frequencies and positions (see Ripley 1978).
There is an obvious relationship between the two
approaches:

Fourier analysis (sine/cosine waves)

�Walsh transform (square waves). {R7}

Wavelets

Wavelet analysis is an approach to analyzing spatial
data, related to spectral analysis, that uses a finite
template or wavelet rather than sine and cosine func-
tions, applied over the length of the data sequence. The
analysis proceeds by providing measures of how well
the wavelet template, of different sizes and at different
positions, matches the data. (As with spectral analysis,
the data are typically a set of measured values in a
continuous or evenly spaced series.) The wavelet trans-
form, T, is a function of the wavelet size and position:

T(b, ui)=
1
b

�
n

j=1

y(uj)g((uj−ui)/b) (26)

where b is a measure of the wavelet’s relative width
(Fig. 6), y(uj) is the density at uj, and g is some
windowing function or wavelet. This is like calculating
the inner product of y(u) with a sequence of functions
localized in size and position (Daubechies 1993).
T(b, ui) takes large positive values when the match
between the data centred at ui and the wavelet template
is very good and large negative values when the match
is very bad. The wavelet given in eq. (26) is a discrete
form of a continuous wavelet transform (i.e. with sum-
mation rather than integration).
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Fig. 6. An illustration of the basic concept of wavelet analysis.
The wavelet template, over a range of sizes and positions, is
compared to the data. Sizes and positions that match very well
produce a large positive score; those that match very badly
produce a large negative score.

that the wavelet variance based on the Haar wavelet is
equivalent to TTQLV and that based on the French
Top Hat wavelet is equivalent to 3TLQV (Dale and
Mah 1998):

Haar wavelet�TTQLV; FTH wavelet

� 3TLQV. {R8}

Both are also related to square wave spectral analysis
using the Walsh transform:

Haar wavelet (TTLQV); FTH wavelet (3TLQV)

�Walsh transform. {R9}

Because both are given in their discrete form here, the
two wavelets in application to continuous data would
produce the continuous equivalents of TTLQV and
3TLQV.

We can also use the wavelet approach to perform the
equivalent of spectral analysis by using the following
function:

gs(u)=
�sin(�u) if −1�u�1

0 otherwise
. (29)

If the elaboration of the sombrero wavelet into the
Morlet was continued indefinitely, the resulting very
long wavelet would also produce something very much
like Fourier analysis:

Different functions can be used, but the ‘‘Mexican
Hat’’ template (Fig. 7) is frequently used. For b=1 its
general form is:

gM(u)=
2

30.5 �−0.25(1−4u2)e−2u2
. (27)

The wavelet variance is:

VW(b)= �
n

i=1

T2(b, ui)/n. (28)

Three other wavelets are shown in Fig. 7: the Haar, the
French Top Hat (FTH), and the Morlet. It is obvious

Fig. 7. The relationships
among a variety of wavelet
based methods of analysis. The
numbers in square brackets
refer to equations and those in
curly brackets refer to less
formal relationships described
in the text.
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Mexican Hat wavelet � Morlet wavelet

� Fourier analysis. {R10}

In any case, wavelet variance analysis can be
modified to give a wavelet covariance for bivariate data
but we will not describe this feature in detail. Wavelet
analysis can also be extended to data from two-dimen-
sional samples such as densities measured on a plane,
for example the amount of vegetation cover in a grass-
land (Csillag and Kabos 1996). One wavelet for such an
analysis would be the function created by rotating a
slightly modified version of the Mexican Hat wavelet
about its centre, which would then strongly resemble a
true three-dimensional sombrero:

Mexican Hat wavelet � three-dimensional

‘‘sombrero’’ wavelet. {R11}

Simple rotation produces an isotropic wavelet and that
isotropy would have to be considered in interpreting
any analysis that used it. Figure 7 illustrates the rela-
tionships among the methods just described.

Fractal dimension

The term ‘‘fractal’’ was introduced to describe phenom-
ena that are continuous but not differentiable, so that
they seem to have a fractional rather than integer
dimension (Mandelbrot 1982). For example, the length
of a coastline, which will seem to become longer, the
smaller the unit used to measure it, has a fractal
dimension between 1 and 2. There is a great deal of
interest in the potential usefulness in applying the con-
cepts of fractals to the study of spatial structures in
ecology (Milne 1988, Palmer 1988, Kenkel and Walker
1993). For example, it has been suggested that fractal
dimension can be used as a measure of habitat com-
plexity and that knowing the fractal dimension of a
habitat can facilitate predicting the frequency distribu-
tion of organisms by size class (for a review of fractals
in ecology, see Kenkel and Walker 1993.) The data for
fractal dimension analysis are often the outlines or
surfaces of objects such as islands of habitat patches or
tree branches (Kenkel and Walker 1993).

The fractal dimension of a spatial structure can be
calculated in several ways, in part depending on the
kind of data (cf. Stoyan and Stoyan 1994). The first
way is to calculate it from the slope of the log-vari-
ogram based on the assumption that the variogram is
an isotropic power function: if slope is:

m(d)= [log(�̂(2d))− log(�̂(d))]/log(2) (30)

then the fractal dimension is:

Fig. 8. The relationships between fractal dimension (box
counting and divider methods) and other methods described in
the text. The numbers in square brackets refer to equations.

D(d)= [4−m(d)]/2. (31)

Another method for calculating the fractal dimension
of a complicated curve such as a coastline is the ‘‘di-
viders’’ method. For a given divider length d, the length
of the curve is then Ld, consisting of Nd straight line
segments each of length d (Fig. 8). When the log of Ld

is plotted as a function of the log of d, the fractal
dimension is estimated from the slope:

D=1−m. (32)

The third method considered here is the ‘‘box count-
ing’’ method. A grid of square boxes with sides of
length r is superimposed on the curve and the number
of these, Br, which contain any part of the curve is
counted (Fig. 8). Again, a range of values of r is used
and the fractal dimension is estimated from the slope of
log(Br) as a function of log(r); here

D= −m. (33)

The box counting method can also be applied to point
patterns. Using the same system of grids of different
unit sizes, for each size, the relative dispersion of the
number of points per unit is calculated as the standard
deviation over the mean:

Rr=sr/m1,r���(r). (34)

The fractal dimension is estimated from the slope of the
log-log plot:

D=1+m. (35)

The relative dispersion is only approximately the square
root of lacunarity, as indicated in eq. (34), because the
units from which it is calculated do not overlap,
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whereas in the calculation of lacunarity, the ‘‘gliding
boxes’’ in which counts are made do overlap. The
relationships of this group of methods are summarized
in Fig. 8.

Run length and join counts

In one-dimensional data, consisting of 1’s and 0’s (pres-
ence vs absence; or black vs white), a commonly used
approach is to define a ‘‘run’’ as a sequence of 1’s with
0’s at both ends (or vice versa). The number of runs
observed, R, can be compared with the expected num-
ber of runs based on the null hypothesis of random
arrangement, using a t-test. The expected value is M
with standard deviation s:

M=1+
2n1n2

n1+n2

(36)

s=
�2n1n2(2n1n2−n1−n2)

(n1+n2)2(n1+n2−1)
(37)

where n1 and n2 are defined as the numbers of 0’s and
1’s (Knight 1974). The test statistic

t= (R−M)/s (38)

is compared with the t distribution on n1+n2−1 de-
grees of freedom.

Dai and van der Maarel (1997) suggested using the
runs of presences, the 1’s, as an approach to detecting
patch size. The frequency of runs of a given length are
compared with the expected value, in their work, using
randomizations. Run lengths that are much more com-
mon than expected are interpreted as being common
patch sizes. This method clearly can only detect the
patches of first order pattern (i.e. it will not detect
clumps of patches) and will work best if the variance of
the run lengths is small.

In two-dimensional data, consisting of a grid (or
lattice) of black and white squares or of 1’s and 0’s, a
related approach is to count the number of white-white
or black-black joins, and compare that number with the
expected value:

Runs test in 1 dimension

�join counts in 2 dimensions. {R12}

Technically, let wij be a neighbour weighting function
(or the set of matrix elements) that takes value 1 if
squares i and j share a boundary and 0 otherwise.
Where the observation xi is 0 or 1, the count of
black-black (1-1) joins can be calculated as

JBB=� � wijYij where Yij=xixj, (39)

JWW=� � wijYij where Yij= (1−xi)(1−xj). (40)

Using the Kronecker delta function, �, we can also
define the count of BW or 1-0 joins:

JBW=� � wijYij* where Yij*=1−�(xi, xj). (41)

The observed values can be evaluated using known
formulae or by randomization (cf. Pielou 1977). In one
dimension, let q1 be the number of runs of 1’s and let q0

be the number of runs of 0’s. The number of BW or 0-1
joins is:

JBW=J01=q1+q0−1. (42)

The same approach of counting joins of units of like
or unlike labels (such as black and white) can be used
for irregularly placed points that are connected by one
of the several possible neighbour networks mentioned
above:

Join counts in a grid

�Join counts on a neighbour network. {R13}

A large number of like-like joins would lead to a high
degree of spatial autocorrelation among first order
neighbours:

Join counts�spatial autocorrelation. {R14}

The concept of run length might be useful for this kind
of data, but it is not clear how best to proceed. Figure
9 illustrates some of the relationships among methods
described in this section.

Second order point pattern analysis for mapped
data

The next group of methods are used for point pattern
analysis; that is, for analysing the mapped positions of
objects in the plane, such as the stems of trees, and
assume a complete census of the objects of interest in
the area under study. One of the most commonly used
methods is called Ripley’s K (Ripley 1976). The calcula-
tion for a given radius, t, is:

K� (t)=A �
n

i

�
n

� j

wij(t)×qij/n
2, (43)

where A is the area of the plot, wij is 1 if dij� t and 0
otherwise, and qij is a weighting factor for edge correc-
tion. This weight qij is 1 if the circle centred on i with
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radius dij is completely within the study plot, otherwise
it is the reciprocal of the proportion of that circle’s
circumference that is in the plot (Diggle 1983). It is
usual to plot a corrected version of the estimated K
function against the radius.

L� (t)= t−�K� (t)/�. (44)

Values greater than 0 indicate overdispersion and nega-
tive values indicate clumping.

This approach can be easily modified for bivariate
data:

K� 12(t)=A �
n1

i

�
n2

� j

wij(t)×qij/n1n2 and

K� 21(t)=A �
n1

i

�
n2

� j

wji(t)×qji/n1n2. (45)

L� 12(t)= t−�(n2K� 12(t)+n1K� 21(t))/�(n1+n1) (46)

(cf. Upton and Fingleton 1985, Andersen 1992). Values
greater than 0 indicate segregation and values below 0
indicated aggregation of the different kinds of points.

Mark correlation function

The next methods are designed to investigate the inter-
actions of neighbouring trees in a forest and appear in

the works of Penttinen et al. (1992), Gavrikov and
Stoyan (1995) and Stoyan and Penttinen (2000). Con-
sider two infinitely small circles of radius da and db,
with the distance between their centres being t. The
probability that both contain points is P(t):

P(t)=	2g(t) da db (47)

where g(t) is the pair correlation function and 	 is the
per area unit density. This is clearly related to Ripley’s
K function because, where u is the variable of
integration:

K(t)=
	 t

0

g(u)2�u du. (48)

This approach can be modified to take account of a
quantitative characteristic associated with the points,
mi, for example the diameter of a tree. Where km(t) is a
mark covariance function, M(t) is the mean of the
product of the marks at distance t:

M(t)=	2g(t)km(t) da db. (49)

If 
 is the mean value of the mi then if km(t)�
2

indicates a positive correlation of the marks at distance
t. We can also define the cumulative function:

Km(t)=
	 t

0

g(u)km(u)2�u du. (50)

Fig. 9. Methods related to
join counts. The numbers in
square brackets refer to
equations and those in curly
brackets refer to less formal
relationships described in the
text.
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If the values of the marks are all 1, this function
reduces to Ripley’s K:

Cumulative pair correlation function

� Ripley’s K. {R15}

We can also define the mark correlation function as:

�m(t)=km(t)/
2. (51)

With a map of n trees, giving their positions and
their marks, where dij is the Euclidean distance between
trees i and j, the functions can be estimated by:

ĝ(t)= �
n

i=1

�
n

j� i

f(dij− t)/	� 22�rs(dij). (52)

The edge correction function is s(dij) and f(x) is a
kernel function such as:

f(x)=

�
�
�
�
�

3
�

1−
x2

�2

��
4� if −��x��

0 otherwise
. (53)

The suggested value of � is 0.2/	. When g(t) is plotted
as a function of t, values of greater than 1 are inter-
preted as indicating a cluster process at that scale and
values less then 1 an inhibition process.

�̂m(t)=
1

	� 2
̂2 �
n

i=1

�
n

j� i

f(dij− t)mimj/2�tĝ(t)s(dij). (54)

The cumulative function Km(t) is estimated by:

K� m(t)=�
i

�
j
dij�r

mimj

	2s(dij)
. (55)

L� m(t)= t−�Km(t)/�
2. (56)

When L is plotted as a function of t, large positive
values indicate overdispersion of the marks and large
negative values indicate their aggregation. The parallels
with the interpretation of Ripley’s K function are obvi-
ous {R16}. Figure 10 shows the relationships among
these methods.

LISAs

In some applications, it may be useful and interesting
to evaluate how the strength of spatial autocorrelation
varies with location within the study area. This can be
accomplished using a ‘‘Local Index of Spatial Associa-
tion’’ or ‘‘LISA’’. Both Moran’s coefficient and Geary’s
can be calculated at each site, i, separately to give
indices of local association or autocorrelation (Anselin
1995, Ord and Getis 1995):

Fig. 10. The relationships with Ripley’s K function. The num-
bers in square brackets refer to equations and those in curly
brackets refer to less formal relationships described in the text.

Ii(d)=
�

i� j

wij(d)(xi− x̄)(xj− x̄)/Wi(d)

� (xj− x̄)2/n
, (57)

where the x’s may now be counts and the rest of the
notation following that in eqs (18) and (19) with the
obvious modifications. Geary’s local measure is:

ci(d)=
�

i� j

wij(d)(xi−xj)
2/2Wi(d)

� (xj− x̄)2/(n−1)
. (58)

Similarly, other measures can be considered in a local
form; for example, Ripley’s K for the ith point is:

Ki(t)=A �
n

j� i

wij(t)×qij/n. (59)

L� i(t)= t−�K� i(t)/�. (60)

Getis and Franklin (1987) suggested creating contour
maps for various values of t, based on the Ripley scores
of the individual points. This can be done for uni- or
bivariate data.

Circumcircle methods

Expanding on the idea of counting points in circles for
completely mapped point data, we can consider ways of
locating the circles, other than centering them on single
points in the pattern, as in Ripley’s K. Each trio of
points in a mapped pattern defines a triangle and each
triangle has associated with it a circle that goes through
all three points, the circumcircle (Dale and Powell
2001). The relationship with Ripley’s approach is based
on counting points in circles:
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Circle on 1 point (Ripley’s)

�Circle on 3 points (circumcircle). {R17}

There is also a relationship, based on the use of the
circumcircle with the definition of one of the neighbour
networks described above, the Delaunay triangulation:

Counts in circumcircles

�empty circumcircles define network. {R18}

Let A be the total area of the mapped plot and let n
be the number of points in it, giving an average point
density of 	=n/A. For the k-th circle, let nk be the
observed number of points within it (excluding the
three that define its triangle). Let ak be the area of the
circle that is within the sample plot; the expected num-
ber of points within the circle is ek= (n−3)ak/A, based
on a hypothesis of random point positions. The ob-
served and expected numbers of plants can be com-
pared using the Freeman-Tukey standardized residual,

zk=�nk+�nk+1−�4ek+1. (61)

The value of z can be considered as a measure of
density in the circle relative to the overall density in the
plot. For example, those with values less than −1.96
can be considered to be indicative of gaps and those
with values greater than 1.96 show patches. The moti-
vation is related to the use of runs tests to look for
common patch and gap sizes in transect data (Dai and
van der Maarel 1997):

Runs test for patch sizes

�Standardized residual to detect patches. {R19}

To distinguish among the hierarchy of overlapping
patches or gaps detected by high or low values of z, we
can define the ‘‘best’’ patches and ‘‘best’’ gaps as those
that provide the greatest contrast with their surround-
ing. To find these, count the number of points in a ring
of width (�2−1)rk around circle k. Let that number
be pk and its expected value ek. The Freeman-Tukey
standardized residual, for the outer ring is then:

�k=�pk+�pk+1−�4ek+1. (62)

The inner residual, zk, can then be combined with the
outer residual, �k, to produce a measure of the contrast
between the inner circle and the outer ring:

Zk= (zk−�k)/�2. (63)

The double circle template from which Z is calculated
is essentially a wavelet, clearly related to the French

Top Hat but in one more dimension, the ‘‘boater’’
wavelet (Dale and Powell 2001):

FTH wavelet�boater wavelet. {R20}

The value of Z for a given circle measures how well the
data match the shape of the template. Following the
procedures used in wavelet analysis, we can plot the
average Z2 as a function of the circle radius. Peaks in
this graph will reflect the sizes of patches and gaps in
the pattern.

For some applications, it is desirable to make the
results of analysis spatially explicit as with LISA’s.
Here, the z or Z score of each circle in a particular size
class could be associated with the centre of the circle. In
that way, a contour map of the scores could be pro-
duced for each of several size classes or scales. The
conceptual similarity with some of the LISA ap-
proaches is obvious:

LISA score�circumcircle Z score. {R21}

Cluster detection

Fotheringham and Zhan (1996) discuss three methods
of detecting clusters of ‘‘diseased’’ points in a point
pattern. The two methods that are most comparable to
the circumcircle method are one which counts the
points in circles of a range of sizes centred on a regular
grid superimposed on the data map and a second which
uses randomly placed circles of randomly chosen radii
(Fig. 11). The most significant circles are drawn onto
the map for the purposes of visualizing the incidence of
the disease. This approach has many similarities with
the circumcircle method described above:

Circles on grid (cluster detection)

�circles on triplets of points. {R22}

Figure 11 shows some of the connections among the
methods described in this section of the paper.

SADIE

SADIE refers to a class of methods known as Spatial
Analysis by Distance IndicEs (Perry 1995, 1996, 1999).
Given a number of individuals in each of several
quadrats, we could calculate the total distance that
individuals would have to move in order to get them all
in one quadrat, the ‘‘distance to crowding’’, as one
index of their spatial arrangement (Fig. 12). More
usefully, given the set of counts, we could characterize
the pattern by calculating the total movement necessary
to get the same number of points (the mean) in each
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Fig. 11. The relationships with methods based on counts in circles. The numbers in square brackets refer to equations and those
in curly brackets refer to less formal relationships described in the text.

quadrat, ‘‘distance to regularity’’ (Fig. 13). This ap-
proach is a spatially explicit revision of the vari-
ance:mean measures of quadrat counts that either
maximizes or minimizes the variance of the numbers in
the sample units:

SADIE�maximize or minimize variance ratio. {R23}

Suppose there are N individuals among n units in a
set of quadrats, either in a grid or possibly irregularly
placed. For each unit, there is the x, y coordinate and
a count of individuals in it, c. Let the mean count be
m=N/n. Let us consider the flow of numbers from the
p units that have counts greater than m, (origins or
sources) to the q units that have counts less than m
(destinations or sinks). There are pq pairs of these units
and we can consider the flow values from source units,
i, to sink units, j, vij. The conditions on vij, which are
non-negative, are:

�
q

j=1

vij=ci−m and (64)

�
p

i=1

vij=m−cj. (65)

Now consider the total flow distance, where dij is the
distance between the units:

D= �
p

i=1

�
q

j=1

vijdij. (66)

The transportation algorithm used in SADIE works to
generate the minimum value of D as a unique solution,
which is the distance to regularity. The test of signifi-
cance is by a procedure that randomizes the allocation

Fig. 12. SADIE: distance to crowding. This technique mea-
sures the total distance that all points would have to be moved
to be perfectly clustered.
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Fig. 13. SADIE: distance to regularity, a measure of the total
distance all points would have to be moved to end up with
maximum overdispersion.

The average inflow distance to the j-th unit is:

uj= − �
p

i=1

vijdij

� �
p

i=1

vij. (68)

To evaluate the observed values, they are compared
with the average values derived from randomizations: ūi

is the average absolute value of u observed at position
i over the randomizations; ūc is the average absolute
value of u observed for count c as it is moved around
in the randomizations; and ūo is the overall average
absolute values of u over all counts and positions. The
observed and expected are compared by calculating the
ratio:

zi=ui/(ūiūc/ūo). (69)

Values of 1.5 or greater are considered to be indicative
of patches, which will be ‘‘hot spots’’ of high outflow
sources. A similar procedure is used to evaluate zj to
find gaps, which will be ‘‘cold spots’’ of high inflow
sinks. The indices can be mapped on the sample units
and the map completed by interpolation. Because of an
obvious choice of colours, these are referred to as
‘‘red-blue’’ plots (Perry 1999). They are clearly similar
to the spatially explicit results of the ‘‘boater’’ wavelet
approach:

SADIE red-blue plots�boater wavelet scores. {R24}

The relationships among the methods of this section
are outlined in Fig. 14.

of counts to sample units. Spatially explicit results can
be obtained by plotting arrows on a map of the grid,
showing the movement of numbers from the sources to
the sinks (Fig. 13).

This description of the SADIE technique has been
phrased in terms of counts in a set of sample units, but
a similar approach can be used for point pattern data.
In it, the points are nominally moved to positions that
make the point pattern completely regular and the
index used is the minimum total distance of movement
required.

The SADIE approach can also be extended to detect
clusters and gaps in count data. Using the notation of
earlier in this section, the average outflow distance from
the i-th unit is:

ui= �
q

j=1

vijdij

� �
q

j=1

vij. (67)

Fig. 14. The relationships of
methods to the SADIE approach.
The numbers in square brackets
refer to equations and those in curly
brackets refer to less formal
relationships described in the text.
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Mantel test

The Mantel (1967) test is a widely used method for
assessing the relationship between two distance ma-
trices, where distance may be of physical location or a
measure of some other kind of dissimilarity. The simple
Mantel test (Mantel 1967, Mantel and Valand 1970) is
a procedure to test the hypothesis that the distances (or
similarities) among objects in a matrix A are linearly
independent of the distances (or similarities) among the
same objects in another matrix B. This test may be used
to evaluate the hypothesis that the process that gener-
ated the first set of distances is independent of the
process that generated the second set. The original
Mantel (1967) statistic is simply the sum of the prod-
ucts of the corresponding distances in A and B. For
symmetric matrices, it is customary to use only the
distances in the upper (or lower) triangular portions of
the two matrices, excluding the diagonal, which are 0 in
distance or 1 in similarity matrices. The Mantel statistic
can also be obtained by computing the element-by-ele-
ment product:

A · B=C. (70)

The statistic is the sum of the elements in matrix C (or,
more often, in the upper or lower triangular portion).
In recent years, it has become customary to compute a
standardized Mantel statistic rM, instead of the original
statistic: rM is the simple linear correlation coefficient
computed between the two sets of distances. The ad-
vantage is that the statistic now takes values between
−1 and +1. The Mantel statistic can be tested either
by randomization, or through a normal approximation
when the number of observations n is large.

This procedure was originally designed by Mantel
(1967) to relate a matrix of spatial distance measures
and a matrix of temporal distances in a generalized
regression approach. The general procedure, now
known as the Mantel test in the biological and environ-
mental sciences, includes any analysis relating two dis-
tance matrices or, more generally, two resemblance or
proximity matrices (Fortin and Gurevitch 2001). In-
dices of spatial autocorrelation such as Moran’s I and
Geary’s c coefficients may be obtained as special cases
of the Mantel test (Anselin 1995):

Mantel test � Geary’s c; Moran’s I. {R25}

Given matrices A, of squared Euclidean distances
among sites for a single variable, and B, the binary
matrix of weights for a given distance class, the sum of
terms in the upper triangle of C=A · B gives a form of
the sample variogram:

Mantel test � sample variogram. {R26}

Fig. 15. Relationships of the Mantel test. The numbers in
curly brackets refer to informal relationships described in the
text.

There is also a close correspondence with the mark
correlation functions defined above because both ap-
proaches take into account distance and similarity
characteristics:

Mantel test�mark correlation functions. {R27}

This relationship is conceptual, rather than based on
mathematical theory. The relationships of the Mantel
test described here are shown in Fig. 15.

A cross-product approach

In attempting to provide mathematical unification of
the range of methods described in this paper, Getis
(1991) has provided valuable guidance by showing that
many of the methods can be expressed as a cross-
product of the form � � wijYij. For example, the join-
count statistics in eqs (39)– (41) are already in that
form. In this section, we will make explicit the applica-
tion of this approach to some of the methods already
described.

In general, we will follow the notation already intro-
duced, with the xi being the data and W(h) being
� � wij(h). For the quadrat variance methods, we can
introduce a block sum function:

Xi(h)= �
i+h−1

k= i

xk. (71)

Defining Yij(x)= (xi−xj)
2 and (72)

wij(b)=
�1 j= i+b

0 j� i+b
, (73)

then TTLQV and PQV (the sample variogram) are:

V2(b)=�
i

�
j

wij(b)Yij(X)/2bW(b); (74)
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Vp(b)=�
i

�
j

wij(b)Yij(x)/2W(d). (75)

Redefining Yijk(x) as (xi−2xj+xk)2 and (76)

wijk(b)=
�1 j= i+b; k= i+2b

0 otherwise
, (77)

then 3TLQV and tQV are:

V3(b)=�
i

�
j

�
k

wijk(b)Yijk(X)/8bW(b); (78)

Vt(d)=�
i

�
j

�
k

wijk(d)Yijk(x)/4W(d). (79)

Getis (1991) shows how some forms of the sample
variogram, Moran’s I, and Geary’s c can all be ex-
pressed in this way. Analysis using wavelets also in-
volves the use of a cross-product (eq. 26), as does the
Mantel test (previous section). Ripley’s K function is a
cross-product (Getis 1991), and the mark-correlation
approach is also clearly of that form (eq. 49). Fractal
analysis does not fit this form directly itself, but the
fractal dimension is often derived from the calculation
of a slope in a log-log plot of a technique that can be
expressed as a cross-product.

The various versions of the circumcircle approach
can be included in this form by defining:

wijkl=
�1 l is in circle ijk

0 otherwise
. (80)

In spite of the structural similarity of eq. (66), the
SADIE methods do not fit well into the cross-product
form. On the whole, however, the cross-product con-
cept makes an important contribution to unifying a
range of methods used in spatial analysis. We should
note, in passing, that some other spatial methods,
which we have not included in this paper can also be
represented in a cross product form.

The mathematical approach just described using the
cross-product construction has a more intuitive analog
in describing the methods by the characteristics of the
template or window that depicts the calculation. For
example, Fig. 1 shows the calculation of lacunarity
using a simple one-part window, Fig. 3 shows the
two-part window for TTLQV and the three-part win-
dow for 3TLQV, and Fig. 7 shows the multipart tem-
plates used in the Fourier and Walsh transforms. We
can, therefore use the number of parts (one, two, three
or more) of the template used to estimate the spatial
structure as a criterion for characterizing the methods.
In addition to lacunarity, other examples of spatial
statistics having one-part templates or windows are the

aggregation indices, the Fractal Dimension based on
Box-Counting (Fig. 8) and Ripley’s K function (Fig.
10). Many of spatial methods use two-part templates:
e.g. Join Count (Fig. 9), Boater Wavelet (Fig. 11), and
Mantel test. There are also several three-part templates
(as in 3TLQV, tQV, FTH Wavelet; Figs 3 and 7) and a
few multipart templates, as in Spectral Analysis, e.g. the
Morlet Wavelet (Fig. 7). In some cases such as
wavelets, the number of parts is determined by the
number of positive and negative parts of a windowing
function.

The second criterion for classifying the methods
based on the window used is the ‘‘positioning’’ crite-
rion, determined by whether the positions of the win-
dows used in calculation are determined by the
positions of the data. An example of a ‘‘position-depen-
dent’’ method is Ripley’s K statistic that uses circles
centred on each point of the data set unlike cluster
detection methods in which the circles occur on a grid
independent of the data (Fig. 10). Other position-de-
pendent statistics are the circumcircle methods and
neighbour network algorithms (Gabriel, Delaunay, etc.)
that connect points with according to their spatial
arrangement. Join Count, sample variogram, Moran’s
I, Geary’s c, Mantel test, and Fractal Dimension have
position-independent templates, where the spatial struc-
ture is computed either a relative position of the sam-
pled points or in agglomerating them into sampling
units (e.g., quadrats, regions).

The third criterion, the ‘‘gliding’’ criterion, considers
whether the calculation is based on gliding and overlap-
ping windows (as in lacunarity, illustrated in Fig. 1,
TTLQV etc.), or stepping and non-overlapping win-
dows (e.g. Join Count, Fractal Dimension based on
Box-Counting, Fig. 8).

The fourth criterion is the shape of the window used
to characterize or compute spatial structure. For exam-
ple, in network algorithms, the shape of the template is
a simple link that connects sampled points to character-
ize the spatial pattern (Fig. 9). For some other spatial
statistics the shape of the window used to compute the
spatial structure is a circle (e.g., Ripley’s K, cluster
detection, Fig. 11), a square or rectangle (e.g. Lacunar-
ity, TTLQV, 3TLQV, Fig. 3), or a curve (e.g., some
wavelets, spectral analysis, Fig. 7).

Describing the methods based on the characteristics
of the template or window used in calculation provides
a visual representation of the cross-product generaliza-
tion, and helps clarify the relationships among the
various methods. To round out this paper, we will
describe six other criteria that can be used to character-
ize the methods, in addition to the four based on the
‘‘window’’, which will be used in an ordination to
create a summary diagram depicting some aspects of
the relatedness among the various methods described.

574 ECOGRAPHY 25:5 (2002)



A pictorial summary

Following the four criteria described in the previous
section, the fifth criterion is the ‘‘data type’’: discrete
data, such as categorical and counts from mapped
coordinates (e.g., Ripley’s K, Join Count, SADIE);
continuous numerical data, such as measurements (e.g.,
some forms the sample variogram, Moran’s I, Geary’s
c, LISA); or both (e.g., Mantel test).

The sixth criterion is the ‘‘distance’’ criterion that
characterizes the spatial lag used to compute spatial
structure. Spatial distance lag can either be in terms of
nearest neighbours (e.g., Join Count), Euclidean dis-
tance (e.g., SADIE), both (e.g., Mantel test) or neither
(e.g., aggregation indices).

The seventh criterion is ‘‘significance’’, indicating
whether the spatial analysis was first developed to
assess whether the spatial pattern identified was signifi-
cantly different from random. The significance test
could be achieved either by using probabilistic or ran-
domized distribution (e.g., aggregation indices, Ripley’s
K, Join Count, Moran’s I). Some spatial statistics were
developed only to describe the spatial structure (e.g
TTLQV, 3TLQV, Fractal dimension) but randomiza-
tion or Monte Carlo techniques can be used also to
assess whether the spatial pattern is significantly differ-
ent from random (cf. Manly 1997).

The eighth criterion is ‘‘directionality’’, determined
by whether the method was first developed for charac-
terizing spatial pattern regardless of the direction (e.g.,
neighbour networks, SADIE) or according to direction
(e.g., sample variogram, Moran’s I).

The ninth criterion is ‘‘stationarity’’. This criterion
creates a dichotomy between the spatial statistics more
sensitive to departure from stationarity (Cressie 1991)
(e.g., sample variogram, Geary’s c, etc.) and those that
are less sensitive to departures from stationarity (e.g.,
Network algorithms, Lacunarity, 3TLQV, Wavelets).

The last criterion is that of ‘‘scale’’ which separates
the spatial statistics that provide information about the
spatial scale of a pattern (e.g., Ripley’s K, 3TLQV,
Wavelets, etc.) from those that do not (e.g., aggregation
indices, Network algorithms).These ten criteria were
used in a Principal Coordinates Analysis (PCoA) of the
spatial statistics using Gower similarity coefficient (see
Legendre and Legendre 1998) by assigning values as
follows: 1) Number of template parts: 1=one; 2= two;
3= three; 4= �3; 2) Positioning: 1=dependent on
data; 2= independent; 3) Gliding criterion: 1=gliding;
2=stepping; 3=either; 4) Shape: 1= link; 2=square/
rectangular; 3=circle/ellipse; 4=all; 5) Data: 1=con-
tinuous (measurement); 2=discrete (categorical or
count); 3=both; 6) Distance: 1=adjacency or link
based; 2=Euclidean; 3=both; 7) Significance: 1=yes

Fig. 16. The relationships of the
methods described in this paper
as arranged in ordination space,
based on ten criteria described
in the text. The first axis
accounts for 37% of the variance
and the second for 18%.
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(parametric or randomization tests); 2=no; 8) Direc-
tionality: 1=yes; 2=no; 9) Stationarity: 1=more sen-
sitive; 2= less sensitive; 10) Scale: 1=yes; 2=no.

The results of this ordination are displayed in Fig. 16.
There is a clear similarity between the PCoA arrange-
ment of methods and some of the relationships por-
trayed in the various figures of relationships among
methods illustrating the earlier parts of this paper. This
pictorial summary provides the reader with one of many
possible overviews of the relationships, both conceptual
and mathematical, among the broad range of methods
described here.

Conclusions

In spite of the diversity of the backgrounds and motiva-
tions that gave rise to the methods described here, there
are some obvious conceptual themes and mathematical
similarities that tie them together. One is the use of a
moving window or template function with which calcu-
lations are made; the preceding section described many
of the methods in those terms. More formally, many of
the methods can be united by expressing them as a cross
product of weights and data. While we do not expect
that any one method can reveal all the important
features of any data set, we must also be aware that the
results of different analyses may not be fully independent
of each other (Legendre and Fortin 1989, Perry et al.
2002). With that in mind, future work may be to develop
sequences of methods to be applied in a given order to
answer specified questions about spatial characteristics.
While the current paper has attempted to explore and
reveal some of the relationships among the methods
described, there remains more to be done in providing
a full understanding of the relationships of their results.
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