
Chapter 7
Mixture Tree Construction and Its Applications

Grace S.C. Chen, Mingze Li, Michael Rosenberg, and Bruce Lindsay

Abstract A new method for building a gene tree from Single Nucleotide Polymor-
phism (SNP) data was developed by Chen and Lindsay (Biometrika 93(4):843–860,
2006). Called the mixture tree, it was based on an ancestral mixture model. The
sieve parameter in the model plays the role of time in the evolutionary tree of the
sequences. By varying the sieve parameter, one can create a hierarchical tree that
estimates the population structure at each fixed backward point in time. In this chap-
ter, we will review the model and then present an application to the clustering of the
mitochondrial sequences to show that the approach performs well. A simulator that
simulates real SNPs sequences with unknown ancestral history will be introduced.
Using the simulator we will compare the mixture trees with true trees to evaluate
how well the mixture tree method performs. Comparison with some existing meth-
ods including neighbor-joining method and maximum parsimony method will also
be presented in this chapter.

7.1 Introduction

There are two major families of methods for building phylogenetic trees: character-
based and distance-based. For the character-based methods, the Maximum Parsi-
mony (MP), the method of Maximum Likelihood (ML), and Bayesian methods are
the most well-known ones.
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Among these methods, the Parsimony method was introduced by Edwards and
Cavalli-Sforza [3], and is one of the first methods to be used to infer phylogeny. A
phylogeny having fewer changes to account for the way a group of sequences has
evolved is preferable. In other words, the most parsimonious explanation for the
observed data is sought. In the method of Maximum Parsimony [2] the tree with
the shortest branch lengths is the best. The steps to create this tree are as follows.
First, informative sites, or sites where at least two different states occur in at least
two taxa, are identified. A subset of trees (or all trees for less than a dozen taxa) is
evaluated using a heuristic approach, and the tree with the shortest branch length is
chosen.

For cases where there are large amounts of evolutionary changes in different
branches of a tree, the method of Maximum Likelihood (ML) is to be preferred.
Maximum Likelihood was created by Ronald A. Fisher [6–8] and later applied
to gene frequency data for phylogenies by Edwards and Cavalli-Sforza [4] and to
nucleotide sequences by Felsenstein [5]. This computationally intensive but flexi-
ble method searches for the tree with highest probability of producing the observed
data. The likelihood of each residue in an alignment is calculated based on some
model of the substitution process.

Unlike ME and MP, the ML and Bayesian methods make use of all of the
information contained within an alignment of DNA sequences. Both ML and
Bayesian methods rely on a likelihood function, L(Parameter)DConstant � Prob
[Data—Parameter(s)], where the constant is arbitrary and the probability of observ-
ing the data conditioned on the parameter is calculated using stochastic models [10].
In ML, the combination of parameters that maximizes the likelihood function is the
best estimate. In Bayesian analysis, the joint probability distribution of the param-
eters is calculated. The posterior probability distribution for the parameters is the
likelihood function times the prior probability distribution of the parameters divided
by a function of the data. However, unlike ML, Bayesian methods treat parameters
as random variables.

Minimum Evolution (ME) is a distance-based approach. In this method, the tree
is fit to the data, and the branch lengths are determined using the unweighted least
squares method. In this method, distance measures that correct for multiple hits at
the same sites are used, and a topology showing the smallest value of the sum of all
branches is chosen as an estimate of the correct tree.

When there are a large number of taxa, ME is time consuming, so the neighbor-
joining method can be used instead. The Neighbor Joining (NJ) method [17] is a
clustering method that minimizes the sum of the branch lengths (this is an approxi-
mation to the ME method). The algorithm begins with a star-like structure. Pairwise
comparisons are made to determine the most closely related sequences that are con-
nected by a single node, called neighbors. Neighbors form a clade, and the process
repeats until the topology is complete.

The NJ and the ME tree are generally the same, but when the number of taxa
is small the difference between the trees can be considerable [12]. If a long DNA
or amino acid sequence is used, the ME tree is preferable. When the number of
nucleotides or amino acids used is relatively small, the NJ method generates the
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correct topology more often than does the ME method [13, 18]. MEGA uses the
close-neighbor-interchange search to examine the neighborhood of the NJ tree to
find the potential ME tree.

Unlike NJ, the Unweighted Pair-Group Method with Arithmetic mean (UPGMA)
assumes a molecular clock that is constant. This simple distance-based clustering
algorithm is significantly less accurate than Neighbor Joining. Each sequence is
assigned to its own cluster then new clusters are formed based on having a minimal
distance between them. The UPGMA trees are always rooted, and the total branch
length from the root to any tip is equal (i.e., the tree is ultrametric). Finding the root
requires an outgroup or is given at the midpoint of the longest distance connecting
two taxa in the tree.

In this chapter, we will review the mixture tree model and algorithm proposed by
Chen and Lindsay [1] in Sect. 7.2 and then in Sect. 7.2.2 present an application to the
clustering of the mitochondrial sequences to show that the approach performs well.
A simulator that simulates real SNPs sequences with unknown ancestral history
will be introduced. Using the simulator we will compare the mixture trees with true
trees to evaluate how well the algorithm performs. Comparison with some existing
methods including neighbor-joining method, and the maximum parsimony method
will also be presented in Sect. 7.3.

7.2 Mixture Tree Algorithm

In this section, we will briefly reviewed the Ancestral mixture model and the
Mixture Tree algorithm introduced in the paper Chen and Linsay [1].

7.2.1 Ancestral Mixture Model

The ancestral mixture model implements K-component mutation kernel mixture
density to estimate the most common ancestor and the evolving history(phylogeny)
of the observed binary DNA sequences. Suppose we observed a sample of binary
DNA sequences X1;X2; : : : ;Xn of length L for a fixed mutation rate p. As all the
sequences are binary, we can code one state 0 and the opposite 1. If we assume that
they evolved from a single ancestor of length L, say �1, and we define �1j as the
j th site of �1, the mutation kernel density for X is defined as

�.xj�1; p/ D
LY

jD1

p.xj��1j /2

.1 � p/1�.xj��1j /2 D pD.x;�1/.1 � p/L�D.x;�1/;

where D.x;�1/ DPL
jD1.xj � �1j /

2 is the number of disagreements between the
site of x and the corresponding site of �1.



138 G.S.C. Chen et al.

If the observed sample is evolving from K different ancestors, say �1;�2; : : : ;

�K , and we consider # as a random variable with distribution Q, where Q is
a discrete distribution with K points of support which are the K ancestors, and
pr.# D �k/ D �k , where �k � 0 and

PK
kD1 �k D 1; then we suppose X is gener-

ated by first generating # D �k fromQ; and generating X D x from �.xj�k; p/: #

is unobserved, and such X is said to have an ancestral mixture model: X � A.Q;p/:
The density of X, when Q is discrete, is:

f .xIQ;p/ D
KX

kD1

�kp
D.x;�k/.1 � p/L�D.x;�k/;

which is called a ‘Q-mixture of mutation kernels’.

7.2.1.1 Mixture Tree Algorithm

In order to find the MLE of �j and �j , where j D 1; : : : ; K , an EM algorithm

is employed. Give a value Q.1/ D .�
.1/
1 ; �

.1/
2 ; : : : ; �

.1/

k�1
;�

.1/

1
; : : : ;�

.1/

K
/for the

mixture, standard EM calculations give

�
.tC1/
j D

Pn
iD1 ı.j jxiI�.t/;�.t//

n
;

where

ı.j jxI�.t/;�.t// D �j � �.xj�j /
PK

jD1 �j � �.xj�j /

We then reupdate the ı weights using the new � before update �. During the
E-step, the expected percentage of category 1 occurrences at site s in component j
as

�js D
Pn

iD1 ı.j jxiI�.tC1/; �.t// � xisPn
iD1 ı.j jxiI�.tC1/; �.t//

and in the M-step, we find the MLE of the parameter by ‘voting’ according to

O�.tC1/
js D

8
<

:

1 �js >
1
2
;

0 �js <
1
2
;

either �js D 1
2
:

A tie in the third case in this structure of the model is extremely rare and it makes
no difference in the EM likelihood.
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7.2.1.2 An Alternative Revised Algorithm

The EM algorithm employed in the mixture models has computational problem such
as small weight �i problem. It is nature to propose an alternative revised EM that
the weights �i is not updated. We will call such revised EM the ‘FixEM’. Later on,
we will compare EM with FixEM in the simulation section.

7.2.2 An Example

In this section we will compare the mixture tree (MT) method with the Neighbor-
joining tree and Maximum Parsimony tree in a visual way and give an example of
the mixture tree structure by using the real data set in the paper [20]. This dataset
can be downloaded from Genbank. There are 530 mtDNA sequences(population) in
HVS1 region with different length and they are collected from people living in 17
locations(sub-populations) in East Asia who belong to two official ethnic groups,
Miao and Yao, and the sample sizes within each location are different. Before con-
structing the trees using different methods, we did some necessary manipulations to
the sequences:

1. Aligned all the sequences using MEGA4 with default setting.
2. Deleted those sites with gaps
3. Deleted those sites that are not binary
4. When applying mixture algorithm, deleted those sites that are identical

7.2.2.1 Trees Based on the Sample Contains One Random
Sequence from Each Sub-population

After applying the above manipulations to all sequences, we constructed trees using
four different methods: NJ, MP, ML and MixtureTree algorithm. It is time consum-
ing and resulting tree structure is quite complex if we use all sequences. Therefore,
one sequence from each location was randomly chosen and used when constructing
trees. Note that the numbers of sequences in the locations are different and some
sequences in the location have duplicates, however, sequences from different loca-
tions are different. After random selection of one sequence from each location, we
have a sample which contains 17 different sequences. Base on the sample, we use
MEGA4 to construct the NJ and MP trees which are presented in Figs. 7.1 and 7.2,
respectively. Also, we use PHYLIP to construct the ML tree presented in Fig. 7.3.
We then deleted all non-binary sites in all sequences then construct the mixture tree.
The mixture method uses the frequency of a sequence in the population to assign a
weight; here the weights are ones. The mixture tree is constructed and presented in
Fig. 7.4.
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Fig. 7.1 The NJ tree for one sample of the data in Wen et al. [20]

Fig. 7.2 The MP tree for one sample of the data in Wen et al. [20]
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Fig. 7.3 The ML tree for one sample of the data in Wen et al. [20]

7.2.2.2 Trees Based on the Sample Contains all Sequences in the Population

We can also construct trees based on the full set of manipulated sequences in the
population by using NJ, MP, ML, and the MT method. The NJ and MP trees can
be constructed in MEGA4 and the ML tree can be constructed in PHYLIP. The
resulting mixture tree is presented in Fig. 7.4.

7.3 Comparison

7.3.1 Simulator

The simulator we used in comparison of different tree reconstructed methods is
ms [9], which is a program to generate samples under a variety of neutral models.
A variety of assumptions about migration, recombination rate and population size
can be set to generate the designated samples. The samples are generated using the
standard coalescent approach in which the random genealogy of the sample is first
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Fig. 7.4 The Mixture Tree for one sample of the data in Wen et al. [20]

generated and then mutations are randomly placed on the genealogy. The simulator
can be run under the Unix-Like operating system like Linux.

The basic command line is:

ms nsam nreps -t �

where

� nsam the number of copies of the locus in each sample;
� nreps the number of independent samples to generate.
� � the mutation parameter, � D .4N0�/, where N0 is the diploid population size

and where � is the neutral mutation rate for the entire locus.
� -t � set value of 4N0�.

In order to output the gene trees, the option�T needs to be added in basic command.
Also, -s j needs to be added, if one wants to make samples with fixed number of
segregating sites, j .
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Fig. 7.5 The Mixture Tree for all samples of the data

7.3.2 Comparison

For a set of parameters(�, s), we simulate a sample of size 200 with no identical
sequences in each observation and no tie in the corresponding gene tree. Once we
have the simulated distinct sequences (suppose it is saved in tree1.fas) and no tie
in the gene tree (suppose it is saved in tree1.nwk), we do the following steps to
complete the comparison:

� Change the format of tree1.fas to the format which can be used in the mixture
tree algorithm and save it as tree1.txt;

� Run the mixture tree algorithm with sliding-scale 0.001 using tree1.txt and obtain
the mixture tree tree1mm.nwk;
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� Substitute A for 0, G for 1 in tree1.fas and reconstruct the Neighbor-joining
(tree1NJ.nwk) and Maximum Parsimony tree(tree1MP.nwk) using MEGA4;

� Using the function unroot, read.tree and dist.topo in the package ape in R
to compare the distance between tree1.nwk and tree1mm.nwk, tree1NJ.nwk,
tree1MP.nwk, respectively. Record them.

If there is a tie in the mixture tree, Neighbor-joining tree, and Maximum Parsimony
tree during any steps above, we will discard the whole set of sequences.

In order to determine the extent of topological differences between the gene
tree(tree1.nwk) and the trees created using the other methods (NJ, MP, and MT),
Rzhestky and Nei [16] method is implemented. This method is based on the Penny
and Hendy’s [14] method of sequence partitioning, which provides equivalent
numerical values to those obtained using the Robinson and Foulds’ [15] method
but is simpler to compute. For unrooted bifurcating trees, this distance is twice the
number of interior branches at which sequence partitioning is different between
the two trees compared. The topological distance can be thought of as the small-
est number of transformations required to obtain the simulated tree topology from
the tree constructed using the mixture algorithm. The Rzhestky and Nei method is
a modification of this distance to take multichotomies into account. These values
were standardized by dividing by twice the total number of internal branches. An
unrooted bifurcating tree with n haplotypes has n � 3 interior branches. Thus, the
maximum possible value is 2.n� 3/. The topological distances were measured and
standardized.

7.3.3 Summary of the Analysis

The maximum distance between two trees, given the number of lineage n, using
Rzhestky and Nei [16] method, the maximum distance between two trees is 2.n�3/.
So it is reasonable to standardize the distances by dividing each distance by the max-
imum distance. With different number of different SNPs sequences, the maximum
distance between two trees would vary under the Rzhestky and Nei method. The
results of the analysis are summarized in Tables 7.1, 7.2, and 7.3.

In the summary Tables 7.1, 7.2, and 7.3, we will call the mixture trees recon-
structed via the FixEM algorithm the ‘FixMixture’, the mixture trees reconstructed
via the traditional EM algorithm the ‘Mixture’. The ‘NJ’ means the trees are

Table 7.1 Comparison Results for simulated data with mutation rate 0.0000025 and sample
size 200
Mutation rate 0:0000025 Length: 20 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 142 136 156 124

Sum of std. distance 35:5 34 39 31
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Table 7.2 Comparison Results for simulated data with mutation rate 0.00000375 and sample
size 200
Mutation rate 0:00000375 Length: 10 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 188 168 208 194

Sum of std. distance 47 42 52 48:5

Table 7.3 Comparison Results for simulated data with mutation rate 0.000005 and sample
size 200
Mutation rate 0:000005 Length: 10 No. of Sequences: 5 Samplesize: 200

FixMixture Mixture NJ MP

Sum of distance 198 146 192 184

Sum of std. distance 49:5 36:5 48 46

reconstructed by the ‘Neighbor-Joining’ algorithm. The ‘MP’ means the trees are
reconstructed by the ‘Maximum Parsimony’ algorithm. The ‘Sum of Distance’ is
the sum of the Rzhestky and Nei distance of all the units in the sample between mix-
ture tree or Neighbor-joining tree or Maximum Parsimony tree and true gene tree,
respectively. The ‘Sum of Std. Distance’ is the sum of Rzhestky and Nei distance of
all units in the sample between three different kind trees and gene tree divided by
the maximum distance of that unit in the sample, respectively. The ‘Length’ is the
length of the simulated sequences in the sample. ‘No. of Sequences’ is the number
of sequences in one sample. Please note again that the ‘sum of (Std.)distances’ are
the sum of distance between the tree reconstructed by one of these three algorithms
and the true gene tree of each unit in the sample. It is obvious that the smaller the
distance between two types of trees, the more similar they are. So we can see that the
‘Mixture’ algorithm performed better than at least one algorithm among other tree
algorithms in these tables. Sometimes ‘Fix Mixture’ algorithm performed equally
better than ‘Mixture’ algorithm, sometimes not. Also, we can see that other two
methods are more stable than ‘Mixture’ algorithm and ‘FixMixture’ algorithm, and
it is probably due to the fact that ‘Mixture’ and ‘FixMixture’ algorithms embed a
more complicated statistical model and take the frequency of each sequence into
account when it constructs the tree.

7.4 Discussion

In this chapter we have given an overview of a new method for tree reconstruction
called the mixture tree. It provides an estimator of population structure at each point
in the past based on a mutational clock. The estimators, unlike some competing
methods, are unique. Linking these estimators together over time provides a tree
that describes how the population might have evolved. Such a tree can also be used
to infer the likely coalescence of lineages, although indirectly. In this chapter we
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demonstrated how the output of this analysis creates a tree very similar to estab-
lished methods in the phylogeny literature, and how it can provide a method that is
competitive with, but not superior to those competitive methods. In fact, we believe
the greater strength of the method lies not in tree construction for distinct phylo-
genies, but because it provides a clustering method, as well as density estimator,
for studies of population structure based on samples from a single population. The
theorems are developed in the paper of Lindsay et al. [11] and will be further inves-
tigated in the future. Moreover, the current algorithm is based on Bernoulli mixture,
which only consider binary sequences. In the future, we will extend it to handle
sequences with multiple category and different mutation rates for different types.
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