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ABSTRACT We introduce a statistical protocol for analyzing spatially varying data, including
putative explanatory variables. The procedures comprise preliminary spatial autocorrelation
analysis (from an earlier study), path analysis, clustering of the resulting set of path diagrams,
ordination of these diagrams, and confirmatory tests against extrinsic information. To illustrate
the application of these methods, we present incidence and mortality rates of 31 organ- and sex-
specific cancers in Europe; these rates vary markedly with geography and type of cancer.
Additionally, we investigated three factors (ethnohistory, genetics, and geography) putatively
affecting these rates. The five variables were correlated separately for the 31 cancers over
European reporting stations. We analyzed the correlations by path analysis, k-means clustering,
and nonmetric multidimensional scaling; coefficients of the 31 path diagrams modeling the
correlations vary substantially. To simplify interpretation, we grouped the diagrams into five
clusters, for which we describe the differential effects of the three putative causes on incidence
and mortality. When scaled, the path coefficients intergrade without marked gaps between
clusters. Ethnic differences make for differences in cancer rates, even when the populations
tested are ancient and complex mixtures. Path analysis usefully decomposes a structural model
involving effects and putative causes, and estimates the magnitude of the model’s components.
Smooth intergradation of the path coefficients suggests the putative causes are the results of
multiple forces. Despite this continuity of the path diagrams of the 31 cancers, clustering offers a
useful segmentation of the continuum. Etiological and other extrinsic information on the cancers
map significantly into the five clusters, demonstrating their epidemiological relevance. Am. J.
Hum. Biol. 16:1–16, 2004. # 2003 Wiley-Liss, Inc.

The analysis of spatially varying population
data presents researchers with a number of
problems. Since neighboring localities fre-
quently affect each other, the resulting data
are spatially autocorrelated, i.e., not indepen-
dent, as conventional statistical tests require.
Positive spatial autocorrelation yields liberal
test results, i.e., the null hypothesis of no
difference among population samples will be
rejected more frequently than indicated by
the nominal significance level. This means
that more observed differences among local-
ities will be considered significant than are
expected by chance sampling. The conse-
quences of disregarding spatial autocorrela-
tion during the analysis of biological data are
discussed in another article in this volume

(Sokal, 2004). Some methods for overcoming
this problem are discussed in Sokal et al.
(1993). When the analysis involves more
than one variable, it may be extended to a
study of the correlation structure of the vari-
ables over the set of correlated localities. The
statistical significance of such correlations is
also affected by the spatial autocorrelation of
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the constituent variables and can yield exces-
sively liberal test outcomes (Clifford et al.,
1989). When, as is common in human genetic
or epidemiological studies, different variables
are extracted from diverse databases result-
ing from different studies, researchers are
faced with the problem of missing values.
This occurs because different studies may
not correspond with respect to the set of vari-
ables analyzed or they may differ in the set of
localities at which samples were taken.
Frequently they will differ with respect to
both criteria. Such problems further compli-
cate any analysis of their covariation. Neglect
of such problems has led to questionable
interpretations of spatial genetic datasets
(Sokal et al., 1999a,b).

In some studies several putative explana-
tory variables are measured at each locality
and coefficients of correlation between these
variables are calculated over the set of local-
ities. Path analysis (Li, 1975; Sokal and Rohlf,
1995) can be used to help interpret intercor-
relations between the observed variables and
the putative causes and to determine themag-
nitude of the effects of the several possible
explanatory variables. In the study presented
below, we examine the effects of three po-
tential explanatory variables (ethnohistory,
genetics, and geography) on two kinds of can-
cer rates (incidences and mortalities). How-
ever, these rates are estimated for 31 different
cancers, resulting in 31 separate datasets of
five variables sampled for a varying number
of localities. In such a situation, two contrast-
ing approaches can be employed. In a top-
down approach, the researcher computes
average correlations between the explanatory
variables and variables of interest based on all
loci studied or on rates for all the recorded
diseases. These average correlations can
then be analyzed by means of a single, overall
path diagram. The bottom-up approach inves-
tigates the diversity of the variation of the
biological variables by studying the differ-
ences among path diagrams for each member
of the set of kindred variables (each type of
cancer). If there are many of these variables,
the examination and comparison of their path
diagrams with all others become tedious and
path diagrams are clustered or ordinated to
group them with other path diagrams show-
ing similar patterns.

Although none of these methods is new
when considered singly, their application in
combination as illustrated in this article is
novel and could be extended to numerous

other examples in human biology.We encoun-
tered these problems during an analysis of
data from human cancer rates and we believe
that the methodology of their solution should
be of interest not only to cancer epidemiolo-
gists but also to other researchers working
with quite different variables.

The two response variables (cancer rates)
and three putative explanatory variables were
taken from available databases with esti-
mates of each variable for each European
locality. Coefficients of correlation between
these variables were calculated separately
for the 31 cancers over the European report-
ing stations, as well as over all cancers by
averaging the correlations. All resulting cor-
relation matrices of the five variables were
analyzed by path analysis. To simplify inter-
pretation, the 31 separate sets of path coeffi-
cients were summarized by k-means
clustering and nonmetric multidimensional
scaling. We interpret the resulting structure
in terms of the differential effects of the three
putative causes on incidence and mortality.
To demonstrate their epidemiological rele-
vance, we mapped etiological and other
extrinsic information onto the resulting five
clusters. References to the sources for these
data and details on the methodology are furn-
ished below.

MATERIALS AND METHODS

Data

During the 1980s and 1990s, the Inter-
national Agency for Research on Cancer
(IARC) compiled data on incidences and mor-
talities for numerous cancers (Waterhouse
et al., 1982; Parkin et al., 1983, 1992; Muir
et al., 1987; Smans et al., 1992; Zatonski et al.,
1996). Cancer incidences are the numbers of
new cases per year of a specified cancer per
100,000 persons in a population from a
defined area, adjusted for the age-structure
of the population. Cancer mortalities are the
numbers of deaths per year due to a specific
cancer per 100,000 persons in a population for
a given area. We correlated interlocality dif-
ferences in the two rates (symbolized as
INCID and MORT, respectively) with ethno-
historic distances (ETH), genetic distances
(GEN), and geographic distances (GEO) for
the areas studied. All five variables in this
study (INCID, MORT, ETH, GEN, and
GEO) were computed as interlocality dis-
tances for the indicated variable. This was
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done for three reasons: 1) Relevant theory
in population genetics (Nei, 1987), genetic epi-
demiology (Morton, 1982), and anthropo-
logy (Smouse and Long, 1992) is frequently
formulated in terms of distances. 2) Cancer
mortalities and incidences are spatially auto-
correlated (Rosenberg et al., 1999; Upton and
Fingleton, 1985). Significance tests for such
data can be conveniently adjusted (by Mantel
tests and their extensions, see below) when
they are expressed as distances. 3) Ethno-
historic and genetic distances permit con-
siderable data compression over the original
values.

The cancer incidence distances (INCID) are
based on absolute differences in incidences
between pairs of areas. These rates, age-
adjusted to the world standard (Higginson
et al., 1992), come from four volumes
(Waterhouse et al., 1982; Parkin et al., 1983,
1992; Muir et al., 1987) that report European
incidence rates for four periods between 1968
and 1988. The number of organ-specific sites
varies for different reporting stations, the
maximal number being 45 for males and 47
for females. The maximal number of
European localities per cancer site is 75, the
maxima per country being: the former
Czechoslovakia, 2; Denmark, 1; England, 8;
Finland, 1; France, 6; Germany, 3; Hungary,
3; Iceland, 1; Ireland, 1; Italy, 9; Netherlands,
2; Norway, 1; Poland, 7; Portugal, 2;
Romania, 1; Scotland, 5; Spain, 7; Sweden, 1;
Switzerland, 5; former USSR, 8; and former
Yugoslavia, 1. We investigated by means of
nonparametric ordering tests whether there
are time trends in the incidences. Finding
none, we calculated average incidences over
time based on from 1 to 4 of these rates to
obtain the final incidence rates used to com-
pute the distances INCID.

Cancer mortality distances (MORT) were
computed from absolute differences in mor-
talities between pairs of areas. Such rates for
Europe are available (in Smans et al., 1992)
for 40 organ- and sex-specific cancers at
355 registration areas in the quondam Euro-
pean Economic Community (EEC) and in
Zatonsky et al. (1996) for 36 cancers at 153
areas (but only 32 cancers at 194 areas) in
Central Europe (CE). The mortality rates in
these sources are stated as age-standardized
deaths per 100,000 population size per
annum (Higginson et al., 1992). At the time
of reporting the mortalities (1970s), the EEC
comprised Belgium, Denmark, Eire, France,
Italy, Luxembourg, the Netherlands, the

United Kingdom, and West Germany. The
CE data are for 1983 to 1987 and include
Austria, Bulgaria (1986/7), the former
Czechoslovakia, East and West Germany
(the West German data are for a later time
span than that of their EEC counterparts),
Hungary, Poland, Romania, and the former
Yugoslavia. The two regions, EEC and CE,
overlap in West Germany and share 34
organ- and sex-specific rates.

Since the incidences and mortalities were
recorded from different sampling stations,
finding matching localities became a pro-
blem. We permitted matches between local-
ities up to 100 km apart (a lower bound for
patch sizes for cancer mortalities in the EEC
having been determined to be 342 km by
Rosenberg et al., 1999). The matched local-
ities (which ranged from 20 to 41 pairs) dif-
fered from cancer to cancer.

We omitted cancer sites with fewer than
20 localities for any one cancer rate or fewer
than 20 matched localities in the combined
database because correlations based on
fewer than 20 paired observations would
have been unreliable. This is especially true
in view of the fact that all variables in the
study are known to be spatially autocorrel-
ated, hence are supported by fewer degrees
of freedom than n-2 (Clifford et al., 1989). In
order for a specific cancer to be included in
our study, we had to be able to match 20 or
more points for mortality, incidence, and
genetics. Of these, the potentially limiting
variables were incidence and genetics, there
being an overabundance of mortality read-
ings. Ethnohistory and geographic coordi-
nates were never limiting since they were
available for any locality in Europe.
Regrettably, this screen eliminated some
common cancers, such as colon/rectal cancer.
We were left with the 31 organ- and sex-
specific cancers, listed in Table 1 (15 for
males, 16 for females).

The ethnohistorical distances (ETH) are
computed from an ethnohistorical database
(Sokal et al., 1996) for Europe from 2200 BC
to 1970 AD, assembled in our laboratory and
consisting of 1,750 ‘‘active’’ records describ-
ing nine types of ethnic movements and
1,710 ‘‘passive’’ records describing locations,
assimilations, and wanderings within the
same area. Each of the 3,460 records lists
the name of a population unit (e.g., tribe,
people) and their language family, when
known; it reports the dates and defines
the areas of movement and location. The
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ethnohistorical database can be found on the
World Wide Web at http://life.bio.sunysb.
edu/ee/msr/ethno.html. The program ETHNO
(by N.L. Oden; available at the same Web
address) estimates the admixture of pop-
ulations from specific language families
following an updating algorithm that uses
optimal weights for each type of movement
(Sokal et al., 1996). At the completion of the
program there are vectors of estimated pro-
portions of contribution by 17 language
families and two unknown groups to the
population mix at each of 2,216 land-based
1� � 1� quadrats in Europe. Most quadrats
receive input from numerous other quadrats

(26 on average). From these vectors we com-
puted arc distances (Cavalli-Sforza and
Edwards, 1967) between all pairs of quad-
rats. Sensitivity experiments showed that
ethnohistoric-genetic correlations were
robust against reasonable perturbations in
time of movement, location, ethnic (lan-
guage-family) designation, and completeness
of the database (Sokal et al., 1996). To
assemble ethnohistorical distance matrices
we chose the set of quadrats that matched
the locations for genetic, mortality, and inci-
dence data.

The genetic distances (GEN) were com-
puted from our genetic database of 3,481

TABLE 1. Path coefficientsa obtained for the 31 cancers and their cluster averages

Groups Cancer sites
Cluster
number

ETH!
MORT

INCID!
MORT

GEN!
MORT

GEO!
MORT

ETH!
INCID

GEN!
INCID

GEO!
INCID

Males Bladder IV 0.1223 0.1844 0.0521 0.0166 �0.0780 0.0841 0.1081
Brain IV 0.1005 0.2559 0.0850 �0.0321 0.0632 �0.0220 0.1627
Gall Bladder V �0.0507 0.3645 �0.0119 0.0351 �0.1219 �0.0372 0.1185
Hodgkins IV 0.0783 0.4040 0.0763 0.0561 0.1175 0.0612 �0.0447
Larynx V �0.1095 0.5231 0.0005 0.0635 0.1417 0.0821 0.0902
Lung V �0.0321 0.4972 �0.0110 0.0823 0.1279 0.0155 0.0641
Lymphoma I 0.2044 �0.0147 �0.0586 0.1428 �0.1997 0.0038 0.1456
Melanoma IV 0.1627 �0.0088 0.0455 0.0513 0.0430 �0.0278 �0.1165
Myeloma I 0.0619 �0.0435 �0.0319 0.2390 �0.1211 0.0605 0.2288
Oesophagus V 0.0154 0.4444 �0.0449 �0.0616 �0.2067 0.1335 0.1960
Pancreas II 0.0180 0.1332 0.0461 0.3985 0.1641 �0.0448 0.1962
Prostate II 0.1099 0.3409 0.0446 0.2064 0.0319 0.0088 0.1155
Stomach III 0.2049 1.0001 �0.0089 �0.4395 �0.1987 0.0168 0.4742
Testis IV 0.1965 0.1098 0.1022 0.0442 0.0279 �0.0037 0.0406
Thyroid IV 0.0601 0.2984 0.0688 0.0326 �0.0338 0.0504 �0.0860

Females Bladder I 0.1629 0.2082 �0.0372 0.1751 �0.1780 0.0152 0.2786
Brain IV 0.1655 0.0780 0.0050 0.0318 0.1779 �0.0039 0.1703
Breast I 0.0145 �0.0746 �0.0731 0.4897 �0.1808 0.0211 0.3212
Cervix II 0.2265 0.2003 �0.0212 0.3532 �0.0175 �0.0288 0.0663
Gall Bladder V 0.0593 0.5692 0.0065 �0.1011 �0.2190 �0.0224 0.2361
Hodgkins IV 0.1834 0.1075 0.0761 0.0213 0.0827 0.0468 �0.0896
Larynx IV 0.0274 �0.0122 0.0478 0.0515 �0.0116 0.0393 0.0565
Lung V 0.1131 0.7399 �0.0358 0.1140 �0.0716 0.0148 0.2609
Lymphoma I 0.1554 �0.1779 �0.0439 0.2027 �0.1567 0.0494 0.2042
Melanoma IV 0.0877 0.1894 0.0139 0.1758 0.0553 �0.0407 0.0325
Myeloma I 0.0580 �0.0300 �0.0065 0.1831 �0.1083 �0.0231 0.2001
Oesophagus III 0.2039 0.8891 0.0394 0.0337 �0.1902 0.0058 0.3972
Ovary II 0.0897 0.2120 �0.0254 0.4711 0.2537 �0.0075 0.0590
Pancreas II �0.0273 0.3096 0.0048 0.4312 0.1500 �0.0123 0.1330
Stomach III 0.1881 0.8133 0.0039 �0.3194 �0.2589 0.0289 0.4351
Thyroid IV �0.0012 0.1974 0.0343 0.0240 0.1515 0.0367 0.1776

AVERAGEb 0.0919 0.2809 0.0110 0.1024 �0.0247 0.0161 0.1494
MEDIAN 0.0897 0.2082 0.0048 0.0561 �0.0175 0.0148 0.1456
Clustersc I 0.1095 �0.0221 �0.0419 0.2387 �0.1574 0.0211 0.2297

II 0.0834 0.2392 0.0098 0.3721 0.1164 �0.0169 0.1140
III 0.1990 0.9008 0.0115 �0.2417 �0.2159 0.0172 0.4355
IV 0.1076 0.1640 0.0552 0.0430 0.0542 0.0200 0.0374
V �0.0007 0.5230 �0.0161 0.0220 �0.0583 0.0310 0.1610

aWe omit showing path coefficient ETH!GEN, assumed constant (0.2381) for all 31 cancers.
bThe AVERAGE path coefficient values differ inconsequentially from the OVERALL values reported in figure 2 of Sokal et al. (2000),
except for INCID!MORT, which should have been 0.2788, but was reported as 0.4834, owing to a recently discovered computational
error. The corrected figure corresponds well with the average path coefficient for INCID!MORT, which is 0.2809 in the above table.
The principal conclusions in Sokal et al. (2000) are not affected by the change.
cThe cluster values are mean coefficients computed for the cluster members from the upper portion of the table.
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samples for Europe (Sokal et al., 1989),
which comprises 26 genetic systems (blood
group antigens, proteins, enzymes, HLA,
and immunoglobulins) with 93 allele or hap-
lotype frequencies. With some exceptions,
each system corresponds to a genetic locus.
The distances were computed separately for
each genetic system. The smallest number of
genetic systems for any one cancer was 15
for males and 14 for females. For each cancer
rate locality, a computer program found the
closest genetic sampling point to form a
matching pair of gene-frequency and mortal-
ity or incidence values. If the closest genetic
point was more than 100 km from the cancer
rate locality, the point was omitted from the
study. This cutoff point was chosen as a con-
servative estimate based on earlier work by
Sokal et al. (1989) demonstrating that the
patch size for these gene frequencies ranges
from 900–1500 km. We computed Prevosti
distances (Prevosti et al., 1975) between
gene-frequency samples and assembled them
intomatrices of genetic distances (GEN) of the
same size as the matching mortality and inci-
dence matrices. Prevosti distances between
localities are average absolute differences in
gene frequencies between these localities,
averaged over all available genetic systems.
As noted above, the minimal matrix size
(number of locality samples) for which we
kept results was 20. The correlations for the
separate genetic systems were then averaged
to yield the correlation coefficients used to
compute the path coefficients in Table 1
explained below.

Geographic distances (GEO) were calcu-
lated as great-circle distances (in km)
between all pairs of locations that matched
those of the other four variables.

Analysis

We treated the data as point estimates
throughout. Rates furnished for an entire
country were treated as though they had
been collected at the capital city. The initial
computation was of all 10 pairwise corre-
lations of the five distance variables of
our study (INCID, MORT, ETH, GEN, and
GEO) for each of the 31 organ- and sex-spe-
cific cancers. Earlier work with these data
(Sokal et al., 1997, 2000; Rosenberg et al.,
1999) demonstrated that the first four vari-
ables were spatially autocorrelated. For this
reason, the distances were correlated and
tested for significance by means of Mantel

tests (Mantel, 1967; Sokal and Rohlf, 1995),
with the matrix elements scaled to yield a
correlation coefficient as the Mantel pro-
duct. The number of pairs of observations
being correlated, n, varied with the cancer
and with the number of matches that could
be obtained between gene frequency local-
ities and cancer rates.

Because human gene frequency data are
largely unbalanced, the GEN distances and
their correlations with the other variables
were computed separately for each genetic
system. These correlations were averaged
over the systems and their overall signifi-
cance was computed by Fisher’s method
for combining probabilities (Sokal and
Rohlf, 1995). Correlations r(ETH,GEN) and
r(GEN,GEO) were held constant for all can-
cers at 0.2381 and 0.2297, respectively, based
on the far more extensive European datasets
in table 2 of Sokal et al. (1996) and table 1 of
Sokal et al. (1997). The remaining eight cor-
relations (of the 10 between all pairs of the
five variables in this study) were indepen-
dently computed for the 31 organ- and sex-
specific cancers.

To represent the interrelations of the five
variables, we turned to path analysis (Li,
1975; Sokal and Rohlf, 1995), a method for
studying the direct and indirect effects of
one set of variables—the causes (predictor
variables)—on another set—the effects (cri-
terion variables). Cause-and-effect relation-
ships are depicted by single-headed arrows,
correlated causes by double-headed arrows.
The strength of single-headed arrows is esti-
mated by path coefficients, which some read-
ers may know as standard partial regression
(beta) coefficients. Path coefficients are
scale-independent measures of the effects of
the predictor on the criterion variables, with
the effects of other predictors held constant.

In this study we use path analysis to exam-
ine the relative strengths of the separate
effects of the variables upon each other
when constrained by our structural model,
the path diagram in Figure 1. In this diagram,
the putative causes ETH and GEO, as well as
GEN and GEO, are connected by double-
headed arrows to indicate correlations by
remote factors that we cannot investigate
further with the present data. The correlation
r(ETH,GEN) is shown as a single-headed
arrow ETH!GEN (a path coefficient),
because ethnohistoric similarity will lead to
genetic similarity, whereas the converse is
unlikely. Ethnohistoric distances may affect
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cancer rates not only through genetic dis-
tances (via the path ETH!GEN), but also
directly expressed as cultural differences,
as shown by paths ETH!MORT and
ETH!INCID. Even though some of the eth-
nic admixtures in ourmodel are quite ancient,
it is possible that some cultural traits that
affect cancer incidences will persist in the
modern admixed populations. The cultural
component of ETH that directly affects
MORTmayrepresent cultural factors affecting
1) the treatment and care of cancer patients, 2)
the correctness of the diagnosis in the death
certificate, and 3) varying death registration
practices in different regions or countries.
Similarly, we assume separate direct paths
from GEN and GEO to INCID and MORT.
The single-headed arrow INCID!MORT
represents thedirect effect of incidenceonmor-
tality, since morbidity precedes mortality. A
reverse arrow is implausible.

The eight correlations among our five
variables not indicated by double-headed
arrows can be expressed in terms of the
path coefficients and the two remote correla-
tions (double-headed arrows) of Figure 1.
These eight equations yield the magnitudes
of the eight unknown path coefficients by
standard methods for solving simultaneous
equations. The resulting path coefficients for
each organ- and sex-specific cancer are furn-
ished in Table 1. We omit showing path coef-
ficient ETH!GEN, assumed constant
(0.2381) for all 31 cancers.

It is not customary to furnish statistical
significance of path coefficients, the relative
magnitudes of the coefficients being the main
feature of interest. However, we can approx-
imate the significance by examining the sig-

nificance of the partial correlations between
MORT and the three putative causes ETH,
GEN, and GEO (in table 2 of Sokal et al.,
1997) and of the partial correlations of
INCID with ETH and GEN (in table 2 of
Sokal et al., 2000). Because the individual ele-
ments of distance matrices violate the inde-
pendence assumptions of ordinary signi-
ficance tests for correlations, we employed
the Mantel test (Mantel, 1967; Sokal and
Rohlf, 1995), which evaluates the significance
by a permutational approach. For partial
correlations of distance matrices we used
a multiple matrix extension of the Mantel
test (Smouse et al., 1986). Combined probabil-
ities (Sokal and Rohlf, 1995) over all cancer
sites indicate significance at P � 0.000,005
for ETH!MORT, GEN!MORT, GEO!
MORT, and for GEN!INCID. The significant
spatial autocorrelation of cancer mortalities in
Europe (Rosenberg et al., 1998) suggests the
significance of the GEO!INCID path over all
cancer sites. Only ETH!INCID is not signifi-
cant.

We shall refer to each row of seven path
coefficients in Table 1 as a path coefficient
profile or cancer profile. To simplify the inter-
pretation of the 31 profiles, we clustered them
by the k-means method (MacQueen, 1967; for
a thorough recent description, see Legendre
and Legendre, 1998, p 349–355). This algo-
rithm randomly assigns each profile to one
of k clusters, then shuffles the profiles
between clusters and, by a stepwise proce-
dure, tries to minimize the sum of squared
distances from each cluster member to the
cluster centroid. Seven hundred separate
attempts weremade to optimize the k clusters
for k ¼ 2 to k ¼ 8. We chose a value of k ¼ 5,
since the sum of squares within clusters for
k > 5 did not decrease appreciably. We con-
firmed the membership of the five clusters
(listed in column 3 of Table 1) by 5,000
additional random partitions into k ¼ 5
clusters, which yielded identical cluster sizes
and compositions each time. The numbers
of cancers in clusters I to V are 6, 5, 3, 11,
and 6.

For another perspective on this cluster
arrangement, we employed ordinations of
the 31 cancer profiles. Such techniques pro-
ject the 6-dimensional profiles into low-
dimensional spaces for ease of inspection
and representation. We carried out principal
components analysis (PCA; Krzanowski,
1988) and nonmetric multidimensional
scaling (MDSCAL; Krzanowski, 1988) of the

Fig. 1. Path diagram for pairwise correlations
between distances or differences of the indicated vari-
ables. ETH, ethnohistory; GEN, genetics; GEO, geogra-
phy; INCID, incidence; MORT, mortality. Double-headed
arrows indicate correlations; single-headed arrows are
path coefficients.
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31 � 31-covariance and distance matrices of
the cancer profiles, respectively. The cancer
profiles were projected into two- and three-
dimensional spaces; their distributions were
examined and compared to their membership
in the k-means clusters. To check the ade-
quacy of the ordinations, minimum spanning
trees (Krzanowski, 1988) for the full-dimen-
sional distance matrices were superimposed
on the projected points.

RESULTS

For convenience, we group the path and
correlation coefficients by magnitude into
four classes. This classification is clearly
arbitrary, but it can be justified by our
extensive experience with these and similar
data. The numerical thresholds defining the
classes (given below) are low by conventional
criteria. This is characteristic of correlations
between distance matrices, which are
usually far lower than those of the variables
on which they are based (Sokal et al., 2000;
Dutilleul et al., 2000). For this reason we call
effects> |0.45| strong, those ranging from>
|0.15| to |0.45| moderate, those ranging
from > |0.03| to |0.15| weak, and those fall-
ing between� 0.03 negligible. In Figure 3 we
represent these four classes by bold, thin
solid, dashed, or dotted arrows, respectively.

The path coefficients for each cancer are
shown in Table 1. In the row labeled
AVERAGE, we also feature their average
values over all cancer sites. These average
values are quite close to the values shown in
figure 2 of Sokal et al. (2000): mean absolute
deviation between the two sets of coefficients
equals 0.0172, after the correction given in
footnote b in Table 1 is made. This similarity
in results obtains despite the two sets of values
resulting from different algorithmic proced-
ures. The current results are the means of
the 31 path coefficients, whereas the earlier
results represent the unique path coefficient
solution of the 10 average correlations.

We note considerable differences in mag-
nitude among the seven average path coeffi-
cients shown in Table 1, ranging from
–0.025 for ETH!INCID to 0.281 for
INCID!MORT. These average path coeffi-
cients give us an estimate, for both sexes and
over all cancer sites, of the relative strengths
of the seven paths. However, these average
values can be misleading because of the con-
siderable variation among the coefficients
for any one vector (with the exception of

ETH!GEN, assumed constant and not
shown in Table 1). Therefore, we examined
the data further by applying two statistical
tests to each vector. First, we tested each
mean for a significant positive or negative
deviation from zero by means of a t-test of
the null hypothesis that the mean path coef-
ficient of the vector equals zero. Next, we
tested the equality of the frequencies of posi-
tive and negative path coefficients. An indi-
cation of this inequality is given by the
median in the row so labeled in Table 1.
The tests concurred in labeling the means
of four of the vectors (ETH!MORT,
INCID!MORT, GEO!MORT, and GEO!
INCID) significantly above zero (at P < 0.01)
and with more positive than negative path
coefficients. Two vectors (GEN!MORT and
ETH! INCID) are clearly not significant by
either test, and GEN!INCID yields an
ambiguous result. While its mean is signifi-
cantly above zero (P < 0.05) and there are
19 positive to 12 negative coefficients, this
inequality is not significant. These tests
establish that some of the path coefficients
are not zero.

We can summarize our findings as follows.
Ethnohistoric distances directly affect genetic
distances moderately and mortality differ-
ences weakly, the direct effect on incidence
differences being negligible. Thus, we have
no evidence for cultural carcinogenic effects,
but some for cultural influences on mortal-
ities (Sokal et al., 1997, 2000; Berrino et al.,
1995, 1999). Different political entities may
practice different mortality registration pro-
cedures; may exhibit differential biases in cer-
tifying deaths due to specific cancers; may
code identical death certificate information
variously in different national vital statistics
offices; or may vary in their practices of hand-
ling imprecise or illegible death certificates.
Cultural differences also include national
and regional variations in level of medical
care (screening, health behaviors, and health
advice) and the reliability of census estimates.
The common factors underlying r(ETH,
GEO)—which can be summarized as: geo-
graphic proximity is reflected by similar
ethnohistories—act directly on mortality and
indirectly via incidences. However mediated,
ethnohistoric affinities contribute to differ-
ences in cancer mortalities. The direct effects
of GEN on MORT and on INCID are both
negligible. Although the effects of GEN are
slight, we should stress that they are highly
significant on both INCID (table 2 of Sokal
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et al., 2000) andMORT (table 2 of Sokal et al.,
1997) for various cancers and overall as well.
In each table the overall effect of GEN on the
cancer rate analyzed is significant atP< 10�5.
The common factors producing r(GEN,GEO)
suggest that geographic proximity is reflected
by similar genetics, but the common factors act
mostly via GEO. Geographic distances influ-
ence both incidences and mortalities weakly,
both directly (possibly reflecting environmen-
tal similarities) and indirectly through their
common factors (discussed above) with ethno-
historic and genetic distances.

The PCA accounted for 78.5% and 91.6% of
the covariance in two and three dimensions,
respectively. The corresponding MDSCAL
final stress values were 0.189 and 0.092,
accomplished in both cases after five itera-
tions. Ordinations by either method are
similar and useful representations of the
multi-dimensional spatial structure of the 31
cancer profiles. The superimposed minimum
spanning trees confirmed the adequacy of the
ordinations, even in two dimensions. Since
the minimum spanning tree connects nearest
neighbors in the full-dimensional space, two-
or three-dimensional ordination may intro-
duce distortions in the true relationships of
the projected objects. Such distortions are
indicated when points that are far apart in
the full-dimensional space appear close to
each other in the reduced dimensional space
(Krzanowski, 1988). In Figure 2 we illustrate
the two-dimensional MDSCAL ordination,
because such plots generally preserve both

near and far distances better than a PCA of
the same dimensionality (Rohlf, 1972). An
example of a distortion in Figure 2 is the dis-
tance between female brain cancer and testi-
cular cancer, which appears close in the
two-dimensional ordination, but in actuality
is much greater, as shown by the circuitous
route by which the minimum spanning tree
connects the two. However, when the entire
assemblage of points (cancer sites) is consid-
ered, the two-dimensional ordination seems
to represent the full-dimensional space quite
well.

In Figure 2 we have indicated membership
in the five k-means clusters. Three of the
clusters, I, III, and IV, are well supported
by the ordination. They are internally con-
nected, i.e., one can travel along the mini-
mum spanning tree from any member of one
cluster to any other member of the same
cluster without traversing any cancers in
the other clusters. The two exceptions
include cluster II, in which one member,
cervical cancer, attaches to female mela-
noma in cluster IV rather than to other
members in its cluster. Cluster V is the
other exception, with two of its members,
male lung and male larynx cancers, sepa-
rated from other members of cluster V by
male Hodgkins and male thyroid cancer of
cluster IV.

Figure 2 reveals that, whereas clusters I,
II, and III are located near the boundaries of
the space defined by the axes of the graph,
clusters IV and V occupy intermediate

Fig. 2. Ordination in two dimensions by nonmetric multidimensional scaling of the 31 cancer path coefficient
profiles. The lines connecting the cancers are edges of a minimum spanning tree in the full dimensional space. The
names of cancers occurring in both sexes are preceded by F for female and M for male cancers. The cluster
membership of each cancer is indicated by the following symbols: stars for cluster I, squares for cluster II, solid
circles for cluster III, open circles for cluster IV, and triangles for cluster V.
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regions of the space and form a gradual trans-
ition between the extremes. Thus, the clus-
ter results, even though stable for 5,000
random partitions, do not necessarily
describe discrete clusters with wide gaps
between them. When the 30 edges of the
minimum spanning tree are ordered from
shortest to longest, the six edges in Figure
2 that are transitions from a member of one
cluster to a member of another cluster are in
positions 7, 14, 20, 22, 25, and 26. (There are
six such edges for five clusters, rather than
the four that might be expected, because of
the above-mentioned two exceptions to
internal connectedness within clusters.)
Although there is the expected tendency
toward long edges between clusters, the
sum of the six ranks is not significantly
higher than expected by chance sampling
(P ¼ 0.148 by an exact Wilcoxon rank sums
test). This implies that the k-means clusters
are not as well separated from each other as
the robustness of their minimal sums of
squares solution might suggest. As a corol-
lary of this finding, we note that among the
10 longest edges in the minimum spanning
tree, seven are within rather than between
clusters. The cancer profiles are packed into
the clusters at different densities and show
differing dispersions. Clusters V and IV dif-
fer the most with respect to dispersion. The
variance of the edge lengths of the former is
�51 times that of the latter. Also differing
are the diameters of the subgraphs of the
clusters (the maximal distance along the
edges between any pair of profiles—a meas-
ure of the ‘‘volume’’ of the hyperspace that
the cluster occupies). Cluster V is the most
strung out, cluster III the least. This is not
immediately apparent from Figure 2, but it
will be recalled that this figure is in the two
major dimensions only, masking the extent
of the spread of profiles into the other five
dimensions. It appears that the effects of the
three putative causes ETH, GEN, and GEO,
as well as INCID!MORT, range widely and
intergrade among the cancer profiles.
Actually, Figure 2 is somewhat misleading,
because it is plotted in two dimensions only.
Clusters I, II, and III are not the mutually
most distant. When distances between clus-
ters are evaluated, the three most distant
pairs of clusters in the full-dimensional
space ordered by length are I–III, II–III,
and III–IV.

In Figure 3 we show path diagrams for all
five clusters based on their mean profiles

furnished in the last five rows of Table 1.
The arrows are coded to indicate the magni-
tudes of the correlations or path coefficients,
employing the conventions described earlier.
Even a casual inspection reveals substantial
differences among the five diagrams. Cluster
I (lymphoma and myeloma in both sexes, as
well as female bladder and breast cancers) is
characterized by moderate effects of GEO
on INCID and MORT, and negligible effects
of INCID on MORT. Cluster II (male and
female pancreas plus cervix, ovary, and pros-
tate cancers) exhibits the highest mean path
coefficient GEO!MORT and a moderate
mean path INCID!MORT. The strongest
average path INCID!MORT (0.9008), a
moderate effect ETH!MORT, and moder-
ate negative effects GEO!MORT and
ETH!INCID mark cluster III (male and
female stomach and female oesophagus). In
cluster IV (brain, Hodgkins, melanoma, and
thyroid in both sexes, as well as male blad-
der, female larynx, and testis), we find a
moderate INCID!MORT effect, with all
other effects positive but weak or negligible.
Cluster V (male and female gall bladder and
lung plus male larynx and oesophagus)
shows a strong path INCID!MORT, a mod-
erate path GEO!INCID, and negligible or
negative effects for the other paths.

DISCUSSION

We commence our discussion of these find-
ings with 1) an interpretation of the three
putative causes in this study—ETH, GEN,
and GEO. This is followed by 2) a brief
account of previous work with these data,
3) a detailed discussion of the epidemiologi-
cal findings of the present study, and 4) the
data-analytic techniques of this study with
the implications of their results for the
model of the intercorrelation of the vari-
ables. We conclude by 5) testing the validity
of the data structure in hyperspace against
extrinsic information from the epidemiologi-
cal literature.

Interpretation of putative causal variables

ETH measures the differences in admix-
ture proportions of the language-family
affiliations of the populations that have
given rise to the modern inhabitants of the
areas concerned (Sokal et al., 1996, 1997,
2000). Although language-family affiliation
of a given ethnic group is most unlikely to
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have any direct effect on cancer rates, speak-
ers of any one language family in most cases
have a shared demographic history, leading
to genetic and cultural similarities. Thus,
ETH distances are a combination of genetic
and cultural components, some of which are
bound to affect cancer rates.

Our GEN estimates are conventional meas-
ures of genetic differentiation among popu-
lations, such as have been used for both
classical loci and molecular genetic informa-
tion. In this study the genetic distances are
based on classical loci, since these are the
only extensively sampled sources of genetic
variation available for most countries of
Europe. In theory, such distances express
the genetic differentiation of a random sam-

ple of genes. In fact, these human genes are
not chosen truly randomly. Numerous inves-
tigators over the years have sampled them
for diverse reasons only rarely related to
cancer. Although some of these loci have
been associated with various cancers as
early as the 1970s (Mourant et al., 1978),
none of the loci in our database have alleles
known to have major effects on the occur-
rence or severity of any cancer in this study.
If cancer—like height—is driven by many
small roughly additive contributions from
different loci, we might expect GEN to be an
important actor in our data. But if cancer is
driven chiefly by a few important loci, it should
not surprise us to find only weak effects of
genetic distances on incidence and mortality.

Fig. 3. Path diagrams based on average path coefficients of the five clusters of cancer path coefficient profiles.
Cluster numbers are indicated next to the diagrams. For abbreviations of variables and meaning of arrows, see Figure
1 legend. The arrows are coded to indicate the magnitudes of the correlations or path coefficients. Strong effects >
|0.45| are shown as bold arrows, moderate effects ranging from > |0.15| to |0.45| as thin solid arrows, weak effects
ranging from > |0.03| to |0.15| as dashed arrows, and negligible effects falling between � 0.03 as dotted arrows. The
coding of the arrows is based on the numerical values of the average path coefficients in the last five rows of Table 1.
Negative signs in parentheses (–) indicate negative path coefficients other than those of negligible magnitude.
Numerical values for the correlation r (ETH,GEO) could be separately computed for each cancer. Their cluster
means range from 0.4682 for cluster I to 0.4756 for cluster II.
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There probably are differences among eth-
nic groups with respect to frequencies of
alleles that strongly affect cancer rates but
are not in our database. Such differences
would be confounded with the cultural
effects of ETH and would not be expressed
through GEN, since the latter refers only to
distances computed from the assemblage of
loci in our database. Factors common to geo-
graphic and genetic distances represent the
spatial autocorrelation of the gene pool
engendered by isolation by distance as well
as by the cohesiveness of ethnic units during
migration and settlement. Isolation by dis-
tance (Wright, 1943, 1969) occurs when indi-
viduals are limited in their dispersal and
tend to mate with partners within their
range of dispersion. This will result in
genetically similar population samples at
nearby locations. This process gives rise to
correlation between GEO and GEN, but it
dies off exponentially with distance, gene
flow between remote locations being limited.

Distances GEO correlate with both ETH
and GEN. Geographically closer samples are
more likely to have a similar ethnohistory
and similar genetic structure than samples
that are farther apart. For GEN the reason
has already been discussed. For ETH it is the
cohesion of ethnic units. Besides the covari-
ates ETH and GEN, the remaining compo-
nent of geographic distance (the direct paths
from GEO to INCID and MORT) will include
environmental differences between the areas
being compared. In view of the important
environmental determinants of carcinogen-
esis, we would expect the path coefficients
representing these effects to be substantial
for some cancers, as indeed they are (see
Table 1).

Previous findings

We have mentioned that in earlier work
with these data (Sokal et al., 1997, 2000;
Rosenberg et al., 1999) we demonstrated sig-
nificant spatial structure for both cancer
rates in Europe. Average correlations of dif-
ferences in cancer mortalities (MORT) with
the three putative causes were found to be
positive and ordered as follows by magni-
tude: GEO > ETH > GEN, whereas differ-
ences in cancer incidences (INCID) were
correlated at a generally lower level, with
GEO > GEN, but not at all with ETH. To
estimate the relative strength of the various
factors acting on the system, Sokal et al.

(2000) also examined the interrelations of
these five variables (INCID, MORT, ETH,
GEN, and GEO) by means of path analysis
of correlation coefficients averaged over all
cancers. The analysis demonstrated the lack
of cultural carcinogenic effects, but sug-
gested cultural influences on mortalities
through differences in recording procedures,
such as the registration of deaths in different
political entities. We found the relatively
large correlation between ETH and MORT
to be due to common factors behind the cor-
relation of ETH and GEO. Geographic proxi-
mity results in similar ethnohistories. The
direct effects of GEN were negligible and
only their common effects with GEO played
a role, accounting for the weak influence of
GEN on INCID and MORT.

There are minor numerical inconsisten-
cies between the results published earlier
(Sokal et al., 1997, 2000) and those in this
article because the present data are limited
to 31 organ- and sex-specific cancers, fewer
than in the earlier analyses. Furthermore,
the number of matching localities for mor-
talities and incidences is frequently lower
than the number of samples employed in
the earlier separate analyses of the two vari-
ables.

We are unaware of work by others, in dif-
ferent disciplines, using the entire sequence
of operations we have applied here. How-
ever, at least two studies (Nantel and
Neumann, 1992; Leduc et al., 1992) carried
out a part of the sequence by combining
Mantel correlations with path analysis in
ecological studies.

Epidemiological findings

Four of the mean path coefficients are
unequivocally significant and positive. The
most marked average path is INCID!
MORT. One might expect the magnitude of
this effect to be even greater than observed,
since there is a direct cause-and-effect relation-
ship between incidence and mortality for a
given cancer. However, the effect will differ
among cancers because of varying treatment
success. Additionally, we expect the effect to be
modulated by geographical differences in
treatment methods and quality of care. The
effects of INCID on MORT in this study are
possibly biased, but it is difficult to discern the
direction of such a bias. In the same popula-
tion, patients scoring positive for INCID in
a time interval will be spread out to encounter
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MORT among several subsequent intervals,
leading to a weakening of the apparent
link between INCID and MORT. In fact,
some of our MORT records precede corre-
sponding INCID records, weakening the link
further. However, our variables are averages
or summaries of individual behavior over time
and space. Correlations between such averages
may exceed the correlations between the indi-
vidual observations themselves. Because both
of these effects are operating, possibly in oppo-
site directions, it is difficult to say whether
INCID-MORT correlations are biased upward
or downward.

We now turn to the other three significant
paths. We have already seen that ETH!
MORT can be explained as the effect of cul-
tural differences on screening for the dis-
ease, health behaviors, health advice, and
processing of death certificates. However, it
may also reflect genetic differences between
ethnic units that are not included among the
loci that constitute our genetic distance
GEN. The GEO!INCID path illustrates
that geographic propinquity will result in
similarity of environmental carcinogens,
hence in similarity of incidence rates. The
fourth path, GEO!MORT, is appreciable
because both quality of care and death certi-
fication are spatially autocorrelated due to
homogenizing influences on the health care
system within political entities.

The remaining three mean path coeffi-
cients (GEN!INCID, GEN!MORT, and
ETH!INCID) are negligible in magnitude.
We have seen that only GEN!INCID differs
significantly on the positive side from a
mean vector of zero (P < 0.05). None of the
three vectors has significantly more positive
than negative paths. Thus, the direct effects
of GEN on these cancer rates seem in doubt.
It seems unlikely a priori for genetic differ-
ences to cause mortality differences, unless
we are studying very specific genes that
affect the outcome of a given course of treat-
ment. We might have expected some differ-
ences in cancer incidences from genetic
differences of populations, yet GEN!
INCID is negligible as well. This supports
our belief that the genetic distances we com-
puted did not include major carcinogenic
loci.

The mean path coefficient for ETH!
INCID is negative, although it is not signifi-
cantly different from zero. How are we to
interpret the negative path coefficients in
Table 1? There are 63 minus signs (29.0%)

among the 217 path coefficients in this table.
It is likely that most negative coefficients
represent random variation around a negli-
gible effect. The 12 most negative coeffi-
cients are all of moderate strength, i.e.,
between –0.15 and –0.45. Nine of the 12
occur in ETH!INCID and, in view of the
lack of significance for the mean vector,
may not warrant interpretation. However,
the two most negative coefficients are for
male and female stomach cancers in the
GEO!MORT vector. These two cancers
are in the outlier cluster III. It is possible to
arrive at a structural explanation for nega-
tive paths a posteriori. However, we hesitate
to ascribe epidemiological meaning to nega-
tive paths for the following reasons: 1) Our
results are constrained by the model chosen
for the path diagram. The model may not be
correct or complete, forcing the negative con-
tribution onto a path where it does not
belong. The path-coefficient model we
employed was based on linear functions esti-
mated by ordinary least squares and these
assumptions and procedures may not repre-
sent the true state of affairs. Since the solu-
tions of the simultaneous equations leading
to the path coefficients for each cancer are
predetermined by the signs and magnitudes
of correlation coefficients, errors in the esti-
mates of the correlation coefficients can lead
to errors in the signs and magnitudes of the
path coefficients. 2) Although an incident
case necessarily precedes a death, our inci-
dence and mortality rates were sometimes
sampled in reverse chronological order. 3)
Measurement error may also play a role in
our results.

Data-analytic methodology

Faced with 31 spatial datasets, one for
each cancer, it is useful to carry out both
approaches outlined in the Introduction—
the top-down approach and the bottom-up
approach. The former yields a summary of
the interrelations of the five variables. The
utility of such a summary will depend on
the variance of the 31 values for each vector
of path coefficients. In the cancer dataset
this variance is substantial for four
paths: ETH!MORT, INCID!MORT, GEO!
MORT, and GEO!INCID. It is therefore only
roughly indicative of the relations in the 31
datasets.

The bottom-up approach starts with sepa-
rate path analyses of the 31 datasets.
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Interesting differences can be seen, but
when as many as 31 profiles have to be com-
pared it is easy to lose sight of whatever
structure there is among the profiles. One
way to impose structure on such data is to
cluster them. However, we must keep in
mind that most clustering techniques will
force the data into clusters regardless of
whether or not the clusters are real (i.e.,
implying a common underlying generating
mechanism). For this reason it is useful to
examine the data by an ordination method as
well. We saw that in the case of the cancer
data, the profiles seem to be distributed in a
continuum with few gaps. We would have
missed this finding entirely had we not pro-
ceeded with the ordination of the data. From
the ordination in Figure 2 we must conclude
that the clusters, while stable, merely seg-
ment the data for convenient description of
the hyperspace. They do not reveal a conven-
tional clustering model with marked gaps
between the clusters.

The smoothly intergrading effects of ETH,
GEN, and GEO could imply at least two dif-
ferent models. Either the putative causes are
single forces exerting a continuous range of
effects, or they are the resultants of multiple
forces, whose joint effects produce the con-
tinuous range of effects. The second model is
the more likely one in this study, since ETH,
GEN, and GEO all are undoubtedly multi-
factorial. ETH will have different cultural
components as well as some genetic ones.
GEN is affected by 26 different genetic sys-
tems in our data and GEO represents geo-

graphic space that isolates populations, as
well as numerous spatially patterned envir-
onmental variables, such as temperature,
rainfall, and insolation.

Confirmation of results

We deemed it desirable to obtain confir-
mation that the hyperspace segments repre-
sented by our clusters have epidemiological
reality and utility. Can they be associated
with relevant, independently obtained infor-
mation?

Using Mantel tests (Mantel, 1967; Sokal
and Rohlf, 1995), we carried out a series of
assessments of design matrices representing
the cluster membership indicated in column
3 of Table 1 against a series of design
matrices depicting available extrinsic crite-
ria. The results are summarized in Table 2.
There are 13 male–female pairs of identical
(organ-specific) cancers in our study. If our
clusters are epidemiologically meaningful,
we expect paired male and female cancers
to share the same clusters. From Table 1,
we can see that 10 of the 13 pairs actually
do so. This result, featured in the first row of
Table 2, is significant at P ¼ 0.0001.

Investigation of the three pairs that do not
share the same cluster (bladder, larynx, and
oesophagus) reveals great sex differences in
both incidence and mortality in these can-
cers. The male:female ratios of both statis-
tics range from 3.41 to 23.48. The only other
cancer with ratios in this range is lung cancer,

TABLE 2. Comparisons of k-means clusters of 31 path-coefficient profiles with available extrinsic criteria
(pairwise and first-order partial correlations)

Type of comparison Extrinsic criterion
Matrix

correlation, r P-valuea
First-order
partial rb P-valuea

Male–female cancer pairs 0.2322 0.0001
Etiological categoriesc Genetics 0.1704 0.0148 0.1490 0.0225

Tobacco �0.0265 0.4487 �0.0676 0.0505
Other environmental factors 0.1163 0.0380 0.0991 0.0594
Endogenous factors 0.0449 0.2271 0.0279 0.2533
Infectious agents 0.0242 0.5385 �0.0109 0.4916

Predicted paths ETH �0.0557 0.2012 �0.0707 0.0968
GEO 0.3533 0.0008 0.3237 0.0005

Mortality correlogram clusters 1-dimensional correlograms 0.4257 0.0001 0.4081 0.0001
2-dimensional correlograms 0.0447 0.1928 0.0059 0.3849

aAll P-values are permutational and based on 10,000 permutations, yielding P ¼ 0.0001 as the lowest possible probability we were able
to obtain.
bIn the partial correlations, it is the design matrix showing the male–female pairs of cancer profiles that is kept constant.
cThe numbers of cancers associated with the five etiological groups follow. The numbers in parentheses furnish a breakdown of the
total number into the five cancer-profile clusters I through V: Genetics 14 (5, 0, 0, 7, 2); Tobacco 10 (1, 2, 1, 2, 4); Other environmental
factors 24 (4, 1, 3, 10, 6); Endogenous factors 10 (1, 2, 0, 5, 2); Infectious agents 3 (0, 1, 2, 0, 0). The total numbers of cancers in clusters I
to V are 6, 5, 3, 11, and 6.
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for which male and female profiles both are
grouped into cluster V, but are separated
along the minimum spanning tree by two
members of cluster IV (Fig. 2). In conse-
quence, some of the path coefficients of the
two sexes in the three cancers differ substan-
tially as well, as can be seen in Table 1. This
is responsible for placing male and female
profiles into different k-means clusters.

When interpreting the remaining tests of
matrix correlation reported in Table 2, we
have to allow for the correlation between the
path coefficient profiles of the paired male and
female cancers. To do so, we calculated first-
order partial correlations between the design
matrices indicating cluster membership of
cancer profiles and the design matrices repre-
senting the various extrinsic factors, holding
constant a third matrix, the design matrix
indicating the male–female cancer pairs. The
significance of each partial matrix correlation
was tested by the Smouse-Long-Sokal test
(Smouse et al., 1986). We note that despite
significant correlations (not shown) for most
design matrices with the male-female cancer
pair matrix, the effect of holding this matrix
constant decreases the partial correlations
only slightly and generally does not change
the P-values very much. An attractive alterna-
tive to computing partial correlations in this
manner would be to carry out the matrix com-
parison tests separately for male and female
cancers. However, simulations (not shown)
indicate very low power for tests with matrices
of dimension 15 by 15 or 16 by 16. Therefore,
we did not pursue this approach.

We coded etiological inferences for the 31
organ- and sex-specific cancers furnished in
Higginson et al. (1992). We grouped the stated
etiologies into the following five categories:
genetics, tobacco, other environmental fac-
tors (e.g., dietary habits, occupational factors,
industrial pollution, UV radiation), endogen-
ous factors (e.g., metabolism, multiparity,
hormones, age), and infectious agents (e.g.,
human papilloma virus). Details on the break-
down by cluster for each etiology are furn-
ished in footnote c to Table 2. Following
Higginson et al. (1992), male and female can-
cers of a pair were always coded the same. We
compared membership of cancers in classes
based on their etiologies to cancer clusters
based on similarity of path diagrams.
Specifically, we are not testing whether any
of the etiological categories are carcinogenic.
That had been established in previous work
(see Higginson et al., 1992). We are testing

whether given etiological categories are pre-
ferentially associated with one or more of our
cancer-site clusters. We would consider such
positive association to be supportive evidence
for the epidemiological utility of the k-means
clusters based on the path coefficient profiles.
The results are shown in rows 2–6 of Table 2.
The matrix correlation coefficients, r, meas-
ure whether the cancer sites with a common
etiology are randomly distributed over can-
cer-site clusters I–V (the null hypothesis)
versus clumping within one or more of
the clusters (the alternative hypothesis). The
first-order partial correlations measure the
same hypotheses, except that the effect of
male and female cancers being similar
(located in the same cluster) is eliminated by
computing the partial correlations in the
manner described above. Of the etiological
factors, genetics and the catchall category
‘‘other environmental factors’’ are signifi-
cantly associated with the k-means clusters.
The latter is only marginally significant when
the first-order partial correlation is consid-
ered. Our results for tobacco deserve special
mention. There is marginal evidence for over-
dispersion, i.e., the 10 tobacco-associated can-
cer sites among the 31 sites studied appear to
be distributed more evenly among our five
clusters than expected by random allocation.
This is seen in the marginal significance
(P ¼ 0.0505) of the negative partial correla-
tion (–0.0676) between cluster structure and
tobacco-mediated cancers. This suggests that
tobacco, the only specific etiological agent
tested (the other categories are all more inclu-
sive), is not associated with specific regional
or ethnohistorical patterns in these European
populations.

Next, we reexamined the etiologies of the
cancers described in Higginson et al. (1992)
and attempted to predict the causal path or
paths (ETH, GEN, or GEO) along which they
would act in the path diagrams. Differences in
incidence and mortality of specific cancers in
various ethnic groups were assigned to pre-
dicted ETH which, as can be seen in Figure 1,
affects INCID and MORT directly, as well as
affecting them via GEN. We reserved assign-
ment to predicted GEN to those cancers asso-
ciated with specific genetic factors (e.g.,
female breast cancer). (However, predicted
GEN turned out to be identical to the design
matrix for genetics in the etiological cat-
egories of Table 2. It is therefore not repeated
in the table.) PredictedGEOwas invoked only
for climatic factors (e.g., UV radiation) or

14 R.R. SOKAL ET AL.



some geographically varying feature (e.g.,
iodine content of soils). Occupational factors,
such as work in asbestos, dye, or rubber fac-
tories, were not assigned to a predicted cate-
gory, since there was no clear association with
ethnic background or geography. Correlation
of predicted ETH and GEOwith the matrix of
cluster membership derived from k-means
analysis of the path coefficient profiles are
presented in rows 7 and 8 of Table 2. We
cannot demonstrate significant association
with our predictions for ETH, but we can for
GEO (and would have for GEN, had we
repeated the results of row 2 in Table 2).

Rosenberg et al. (1999) analyzed the spatial
autocorrelation of the Western European can-
cermortality data (Smans et al., 1992) that are
part of our present dataset. In their tables 2
and 3, respectively, Rosenberg et al. (1999)
present the results of k-means clustering of
the one- and two-dimensional correlograms
for these data. These authors obtained four
clusters of the former and five of the latter,
members of a cluster sharing similar spatial
patterns of cancer mortality. We cannot
expect too much agreement between the clas-
sifications for 31 cancers common to the study
by Rosenberg et al. (1999) and the present
analysis, as those from the previous study are
based entirely on the spatial properties ofmor-
tality data and are limited to Western Europe.
Yet we find considerable and highly signifi-
cant agreement between the classes of path
coefficient profiles and those of one-dimen-
sional mortality correlograms, but no agree-
ment with the two-dimensional mortality
correlograms (see rows 9 and 10 of Table 2).

Overall, there is clear significant associa-
tion between the k-means clusters and the
second, third, and fourth type of comparison
in Table 2, yielding P < 0.002 by a
Bonferroni procedure (Sokal and Rohlf,
1995). We conclude, therefore, that etiologi-
cal and other extrinsic information on the
cancers is associated significantly with the
five clusters of cancer profiles, demonstrat-
ing that the profiles carry epidemiologically
meaningful information.

In an indirect manner, the results reported
in this section also confirm the reality of
the clusters of cancer profiles obtained
by the k-means method and the validity of
the underlying (dis)similarity structure of the
profiles as revealed in the ordination. If the 31
path diagrams differed only randomly in the
magnitudes of their path coefficients, it would
be difficult to explain the significant associa-

tion observed between the positions of the
profiles in the variable-space (as witnessed
by their membership in the five clusters)
and the various extrinsic criteria.

In this study we have demonstrated the
importance of ethnohistory in the determi-
nation of some cancer incidence and mortal-
ity rates. If even differences in ancient
ethnic mixtures between pairs of sampling
points in Europe show effects on cancer
rates, one can expect that distinct ethnic
minorities in modern populations will exhi-
bit such effects a fortiori. Our results empha-
size the importance of studying ethnic
differences in epidemiological investigations.
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